Асинхронный двигатель при неподвижном роторе

Достоинства и недостатки электромоторов с фазным ротором

Сейчас асинхронные силовые агрегаты широко применяются как в быту, так и на производстве. Такая популярность обусловлена большим количеством преимуществ, расширяющих их функционал и назначение.

Среди основных достоинств асинхронных моторов с ротором фазного типа можно выделить:

  • высокие показатели стартового крутящего момента;
  • стойкость к механическим перегрузкам без значительного уменьшения коэффициента полезного действия, а также без снижения эффективности и стабильности функционирования электроустановки (скорость работы даже сильно нагруженного агрегата остается в пределах допустимой нормы);
  • низкая величина пускового тока;
  • возможность работы в полностью автоматическом режиме;
  • простая и интуитивно понятная схема пуска;
  • доступная стоимость;
  • отсутствие дополнительного рабочего и дорогостоящего монтажного оборудования.

Несмотря на все многочисленные плюсы, нельзя не отметить и недостатки асинхронного двигателя с такой конструкцией. Главный из них – это достаточно большие габаритные размеры агрегата, что усложняет процесс монтажа, дальнейшую эксплуатацию и ремонт асинхронного двигателя с фазным ротором. Кроме того, такие электромоторы часто уступают по продуктивности и КПД аналогичным по мощности силовым агрегатам с короткозамкнутым ротором.  

Синхронный и асинхронный двигатели переменного тока

Двигатели переменного тока подразделяют на синхронные и асинхронные. Для постоянного тока это разделение не имеет особого смысла. Ведь там нет как такового понятия фаза и изменения направления тока.

Логика работы в обоих двигателях одинаковая. Но, судя по названию, в асинхронном что-то должно происходить ни в такт с основным процессом.

Синхронный и асинхронный двигатели отличаются преимущественно конструкцией ротора.

В роторе синхронного двигателя предусмотрена обмотка с независимой подачей напряжения или постоянные магнитики. Они толкают ротор относительно пульсирующего магнитного поля.

Ротор синхронного двигателя

У асинхронного ротора ток формируется с помощью магнитного статорного поля. В соответствии с законом электромагнитной индукции под действием прямого и обратного магнитных потоков в обмотке ротора станет действовать электродвижущая сила. Ротор похож по своей конструкции на колесо для грызуна. Но бывают и варианты с обмоткой, расположенной определенным образом.

Ротор асинхронного двигателя

В синхронном двигателе поля статора и ротора взаимодействуют друг с другом и имеют равную скорость. Ротор вращается в соответствии и точно в такт с полем статора. Частота вращения ротора синхронна частоте тока обмотки статора.

Не забываем, что обмотка ротора асинхронного двигателя, будь-то клетка или катушки под 120 градусов, является замкнутым контуром. В ней наводится ЭДС, а возникающий магнитный поток придает вращение ротору, отталкиваясь от пульсирующего магнитного поля статора. Движется эта кухня в направлении движения магнитного потока статора. Вращающий электромагнитный момент пытается уравнять скорости вращения магнитных полей статора и ротора, но это не всегда получается (а лучше сказать — никогда). Ведь уровнять эти моменты можно лишь в случае, если создавать поля одновременно, как в синхронном двигателе. Также влияет механическая нагрузка, которая подключена к валу ротора и мешает догнать поле. Но и в свободном состоянии эти цифры будут различаться. Ведь у любого механизма имеется некоторая инертность, а на время появления поля в замкнутой клетке (т.е. роторе асинхронного двигателя) тоже требуется время.

Вообщем-то, это основные вещи, которые вам следует уяснить. Всё остальное — это погружение в особенности конструкций конкретных агрегатов.

Конструкция простейшего электродвигателя

Простейший электродвигатель

Опять-таки, отметим, что рассматриваемая конструкция — это далеко не единственный вариант реализации подобных устройств. Однако, большая часть приборов работает именно так и среди бытовых приборов или в транспорте вы вряд ли обнаружите что-то другое. Поэтому, рассмотрим простейшую схему и элементарный вариант реализации прибора.

Конструкция самого простого электродвигателя является довольно примитивной. Он состоит из статора и ротора. Всё это убрано в корпус и подсоединяется проводами к источнику электрической энергии. Ещё есть подшипники, но это вещь сугубо механическая и нас сейчас не особенно интересует.

Части двигателя

Статор — это неподвижная часть. Преимущественно неподвижная часть представлена постоянными магнитами. Но бывает и обратный вариант, когда на статоре выполнена обмотка. Различие обусловлено тем, в сети какого типа работает двигатель — постоянного или переменного тока.

Ротор — это подвижная часть, которая, как правило является якорем, а на нем выполнена обмотка. К ротору подходят щётки, на которые подается электрический ток.

Щетки подключаются проводами к источнику питания. Именно они «передают электричество». Но щетки есть не во всех конструкциях двигателей.

Вся конструкция смонтирована в корпус и в закрытом виде представляет собой готовый к работе силовой агрегат. Иногда на ротор двигателя ещё добавляется крыльчатка вентилятора, которая обеспечивает циркуляцию воздуха через агрегат и его дополнительное охлаждение. Так обычно монтируются двигатели постоянного тока.

На валу двигателя мы получаем крутящий момент, который прекрасно можно использовать для своих нужд. Например, передать его посредством зубчатой передачи на редуктор или использовать непосредственно для получения полезной работы (как в вентиляторе дома).

Женщина доила корову, а воде отражалось всё наоборот. Такое может быть и с конструкцией электродвигателя. Тогда намотка там будет на статоре, вместо ротора. Это уже будут двигатели переменного тока. Сам же ротор будет выполнен или из постоянных магнитов, или выглядеть как короткозамкнутая клетка (её ещё именуют беличье колесо).

Бывает также, что и статор, и ротор электродвигателя представляют собой обмотки. Тогда картина незначительно меняется. Правда смысл всё равно сохраняется прежним. Про принципы конструирования таких машин мы поговорим чуть позже.

5.18.5 Сельсины

Представим себе два асинхронных двигателя с фазным
ротором включенным последующей схеме (рис. 5.18.5.1). Обмотки статора С1,
С2, С3, называемые обмотками возбуждения, включены в общую
сеть трехфазного тока.

Обмотки ротора P1, P2, P3
объединены трехпроводниковой линией связи. Магнитные потоки обмоток возбуждения
при q1=q2 наводят в соответствующих
обмотках роторов равные и совпадающие по фазе ЭДС.

Если ротор двигателя Д1 повернуть на угол q1,
а ротор Д2 оставить на месте (q2=0), то в фазных обмотках
ротора двигателя Д2 будет наведена ЭДС E2>E1. В результате
в линии связи потечет ток DI от большего потенциала к меньшему.

,

где 2z — сумма сопротивлений обмоток роторов и линии связи.

Этот ток, пройдя по обмоткам роторов, взаимодействуя
с магнитными полями статоров, вызовет образование дополнительных вращающих моментовDM. Поскольку направление момента DМ в каждом двигателе
будет свое, то в одном из них произойдет поворот ротора вправо (у двигателя
Д2), а у другого — влево (у двигателя Д1).

Следовательно, оба двигателя самостоятельно (синхронно)
придут в положение (q1=q2).
Такая система получила название синхронно-следящей.

Практическое использование эта система получила
в многоприводных механизмах (конвейерах, козловых кранах и т.п.).

В автоматике применяются так называемые сельсины.
Это маломощные асинхронные машины с однофазным статором и трехфазным ротором.

Сельсины применяются для целей измерения или определения
угла, на который повернулся определенный механизм.

В сельсинной передаче всегда используются две машины:
сельсин-датчик и сельсин-приемник.

Обмотки возбуждения бывают обычно однофазные и
располагаются на явновыраженных полюсах. Число полюсов всегда два. Обмотки синхронизации
— трехфазные, размещаются в пазах ротора и оканчиваются тремя контактными кольцами
(рис. 5.18.5.2).

В отличие от силовых синхронно-следящих систем,
поворот ротора сельсина-датчика осуществляется принудительно, а ротор сельсина-приемника
приходит в движение автоматически. Поворот ротора фиксируется индикаторной стрелкой.

При наличии однофазных обмоток возбуждения на статоре
поворот ротора сельсина-датчика может осуществляться в любую сторону, т.к. пульсирующее
магнитное поле статора обеспечивает для этого необходимые условия.

Помимо приведенного индикаторного режима, сельсины
могут работать и в так называемом трансформаторном режиме.

В этом случае сельсин-приемник, не только показывает
угол рассогласования q, но и вырабатывает электрический сигнал
для управления мощным механизмом

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Текст

,Ч. Кл. Н 02 р 3/2 Гасударственный комитет Совета Министрав СССР оа долам изааретений и открытийПриоритет Опубликовано 03.Х.1973. Бюллетень ЛЪДата опубликования описания 12.11.1974 УДК 621,316.719(088,8) Авторизобретения В. И, ашкал аявите Н НОГО ТОРМОЖТРОДВИ ГАТЕЛ о тормо- беспечиигателей рной баятую емтем, чтоическую 10 аторной е двига схе леи отся его 2его копредеПредмет изоб ен ия 5 заатывает, юченного ечивают игади тся,СПОСОБ КОНДЕНСАТО АСИ НХРО Н Н ЪХ ЭЛИзобретение относится к области тормония асинхронных двигателей.Известные системы конденсаторногжения асинхронных двигателей не овают условий самовозбуждения двпри использовании общеи конденсатотареи и включение двигателей на занкость.Описываемый способ отличаетсякратковременно прерывают электрсвязь тормозных двигателей с конденсбатареей и затем вновь подключает встеди к этой батарее.На фиг. 1 изображена принципиальнаяма устройства для трех двигателей для оществлени я описываемого способа;фиг. 2 — схема управления торможенасинхронных электродвигателей.После отключения одного из двигатесети, например двигателя 1, включаеттормозной контактор 2 и присоединяетконденсаторной батарее 3 на время,ляемое выдержкой реле 4. При этом в цкатушки реле совместного торможенмыкается контакт 6, но реле не срабтак как из-за последовательно вклрезистора 7 ампервитки реле не обесппритягивания якоря реле.Если в процессе торможения первого двтеля к конденсаторной батарее 3 присоеняется второй двигатель 8, то оказывае что в цепи катушки реле 5 два резистора 7 и 9 включены параллельно. Это приводит к увеличению тока катушки и срабатыванию реле 5. Последнее размыкает контакт в цепи катушки контактора 10. Вслед за этим включается реле 11, шунтируя контакт контактора 10 в своей цепи, а затем — реле 12, Оно шунтирует разомкнувшийся вначале контакт контактора 13 в цепи катушки 14. Благодаря этому контактор 10 включается вновь.Кратковременное отключение контактора 10 приводит к уравниванию напряжений статора обоих электродвигателей соединительными проводниками, в связи с чем прн повторном включении контактора 10 условия самовозбуждения обоих двигателей существенно улучшаются и торможение их протекает нормально. Способ конденсаторного торможения асинхронных электродвигателей, отличаюи 1 ийся тем, что, с целью улучшения условий самовозбуждения двигателей при использовании общей конденсаторной батареи и включении двигателей на занятую емкость, кратковременно прерывают электрическую связь тормозимых двигателец с конденсаторной батареей и затем вновь подключают все двигатели к упомянутой батарее.390986 Составитель Ч, Иаздю ПодписпоСР якяз 28,1 И погряфин, пр, Сапунова, 2 Изд. ГА 81 Государственного коми по лелям изобрете Москва, Ж.35, РаунТираж 755 тета Совета Министро пй и открытий скан паб д. 4/5

Смотреть

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Конструктивные особенности

Основными элементами электродвигателя любого назначения являются статор и ротор. Для защиты от контактов с окружающими объектами система с обмотками закрывается в прочный кожух. Предотвратить перегрев обмоток позволяет дополнение в виде установленного на роторном валу охлаждающего вентилятора.

Статор асинхронного трехфазного двигателя с короткозамкнутым ротором имеет стандартное для электродвигателей строение. Исполнение, рассчитанное на работы с обмотками на три фазы, подразумевает расположение сердечников под углом в 120о. Обмотки выполняют из медной проволоки подходящего сечения, изолированной. Подключение обмоток производится в звезду или треугольник (оно описано в отдельных статьях). Статорный магнитопровод жестко фиксируют к стенкам корпуса.

Роторная часть имеет внешний вид, похожий на небольшую цилиндрическую клетку. Парные кольца исполняют роль короткозамыкающего элемента для стержней, изготовленных из алюминия. Если рассматривать конструкцию высокой мощности, для нее стержневые части конструкции могут изготавливаться из меди. Причиной использования данного материала служит его низкое сопротивление. Однако есть и минусы – медь для обмотки стоит дороже алюминия и быстрее плавится при нагреве сердечника вихревыми токами.

Расположение стержней при сборке выполняется поверх сердечников из специальной трансформаторной стали. Монтаж производят на валу агрегата, провод обмотки впрессовывается в специальные пазы магнитопровода. Простота изготовления повышается тем, что в таком исполнении для магнитопроводных пластин не требуется изоляция. Это – один из главных факторов, сделавших асинхронный агрегат короткозамкнутого типа самым популярным (его доля в общей массе электромоторов достигает 90%).

Принцип работы и подключение однофазного электродвигателя 220в

Однофазный двигатель работает за счет переменного электрического тока и подключается к сетям с одной фазой. Сеть должна иметь напряжение 220 Вольт и частоту, равную 50 Герц.

Электромоторы этого типа находят применение в основном в маломощных устройствах:

Выпускаются модели с мощностью от 5 Вт до 10 кВт.

Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Перегрузочная способность также выше у двигателей с 3 фазами. Так, мощность однофазного механизма не превышает 70% мощности трехфазного того же размера.

  1. Фактически имеет 2 фазы. но работу выполняет лишь одна из них, поэтому мотор называют однофазным.
  2. Как и все электромашины. однофазный двигатель состоит из 2 частей: неподвижной (статор) и подвижной (ротор).
  3. Представляет собой асинхронный электромотор. на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока.

К сильным сторонам двигателя данного типа можно отнести простоту конструкции, представляющую собой ротор с короткозамкнутой обмоткой. К недостаткам – низкие значения пускового момента и КПД.

Главный минус однофазного тока – невозможность генерирования им магнитного поля, выполняющего вращение. Поэтому однофазный электромотор не запустится сам по себе при подключении к сети.

В теории электрических машин, действует правило: чтобы возникло магнитное поле, вращающее ротор, на статоре должно быть по крайней мере 2 обмотки (фазы). Требуется также смещение одной обмотки на некоторый угол относительно другой.

Во время работы, происходит обтекание обмоток переменными электрическими полями:

  1. В соответствии с этим. на неподвижном участке однофазного мотора расположена так называемая пусковая обмотка. Она смещена на 90 градусов по отношению к рабочей обмотке.
  2. Сдвиг токов можно получить, включив в цепь фазосдвигающее звено. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы.
  3. В качестве основы для статора и ротора используется электротехническая сталь 2212.

Неверно, называть однофазными такие электродвигатели, которые по своему строению являются 2- и 3-фазными, но подключаются к однофазному источнику питания посредством схем согласования (конденсаторные электромоторы). Обе фазы таких устройств являются рабочими и включены все время.

Короткозамкнутый и фазный ротор

Различают два типа асинхронных двигателей — с короткозамкнутым и с фазным ротором.

Короткозамкнутый ротор или ротор типа «Беличья клетка» представляет собой набор медных или алюминиевых стержней (2) соединенных (замкнутых) между собой кольцом (3). Стержни впаиваются или заливаются в сердечник (1). Беличьей клеткой его называют из-за внешней схожести, что вы и можете наблюдать в левой части следующей иллюстрации.

Фазный ротор отличается конструкцией, на нём расположена полноценная трёхфазная обмотка, зачастую её катушки соединены по схеме «звезды», то есть их концы соединяются в одной точке, а начала катушек соединяются с токопроводящими кольцами. С помощью щеточного узла образуется скользящий контакт с кольцами. Он, в свою очередь, состоит из щёток и щеткодержателей.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим – основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Разновидности по количеству фаз

В зависимости от исполнения и способа подключения конструкции для короткозамкнутого вида делят на 3 типа, каждый из которых имеет свои особенности:

  1.       Однофазные. Применяется единственная рабочая обмотка. Запуск производится посредством катушки индуктивности, на короткий период подключаемой к сети через конденсатор. Также возможен вариант короткого замыкания. Конструкция рассчитана на малую мощность, и широко применяется в бытовых приборах.
  2.       Двухфазные. Статорная конструкция использует 2 обмотки, расположенные перпендикулярно относительно друг друга. Подача переменного напряжения при этом производится на каждую из них. Основное направление применения – однофазные сети. Для корректной работы в таких условиях напрямую к фазе подключается только одна из обмоток. Вторая запитывается посредством фазосдвигающего конденсатора. Данный элемент является обязательным, поскольку без его добавления в схему вращение вала не начнется. В силу такой особенности двухфазные асинхронные двигатели иногда называют конденсаторными.
  3.       Трехфазные. Конструкция подразумевает 3 обмотки. Могут производиться с разными системами пуска, однако в любой конструкции отличаются повышенной стабильностью работы при номинальной нагрузке. Имеют самые высокие пусковые характеристики.

Количество и расположение обмоток выбирают в зависимости от типа сети и уровня нагрузок, которые придутся на мотор.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток

Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Химия движения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: