Как подключить однофазный электродвигатель на 220 вольт
Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт – это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.
Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы. При этом, необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.
Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал. Для того, чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении. При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды. Вторая же обмотка включена все время. Для того, чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.
Подключение электродвигателя на 220 вольт: мотор запускается путем подачи 220 вольт на рабочую и пусковую обмотки, а после набора необходимых оборотов нужно вручную отключить пусковую. Для того, чтобы фазу сдвинуть, необходимо омическое сопротивление, которое и обеспечивают конденсаторы индуктивности. Встречается сопротивление как в виде отдельного резистора, так и в части самой пусковой обмотки, которая выполняется по бифилярной технике. Она работает так: индуктивность катушки сохраняется, а сопротивление становиться больше из-за удлиненного провода из меди. Такую схему можно наблюдать на рисунке 1: подключение электродвигателя 220 вольт.
Рисунок 1. Схема подключения электродвигателя 220 вольт с конденсатором
Существуют также моторы, у которых обе обмотки непрерывно подключены к сети, они называются двухфазные, потому как поле внутри вращается, а конденсатор предусмотрен, чтобы сдвигать фазы. Для работы такой схемы, обе обмотки имеют провод с равным друг другу сечением.
Преимущества схемы тиристорного преобразователя: автор В Соломыков
Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.
Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.
Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
- DD1 — К176ЛЕ5;
- DD2 — К176 ИР2.
Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
Логическая часть
Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.
Таблица данных К176ИР2 и состояний регистров
Число разрядов |
4х2 |
Входы |
Выход |
|||
Сторона сдвига |
Направо |
C |
D |
R |
Q0 |
Qn |
Тип ввода |
Последовательно |
∫ |
H |
Н |
H |
Qn-1 |
Тип вывода |
Параллельно |
∫ |
B |
H |
B |
Qn-1 |
Тактовая частота |
2,5MHz |
∫ |
X |
H |
Q1 |
Qn не меняется |
Рабочая температура |
-45÷+85 |
X |
X |
B |
H |
H |
Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.
Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.
Силовая часть схемы, принципы ее управления и наладки
При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.
При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.
В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.
Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.
Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.
Емкость конденсаторов предварительно рассчитывают по формуле:
При номинальной частоте вращения ротора выставляют n=1.
Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.
Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.
Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.
Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.
Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.
Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.
Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.
Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.
Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.
Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.
Использование магнитных пускателей
Довольно популярная модель присоединения электромоторов.
Подсоединение АД через магнитный контактор к сети 220
L1 –первый провод, L2 – вторая провод, L3 – третья провод, КМ – магнитный пускатель
Рассмотрим схему включения электродвигателя через магнитный контактор 220 подробней.
Три провода под напряжением проходят через пускатель. Для управления включением в сеть есть кнопка «Пуск». А для выключения используется кнопка «Стоп». Кнопки можно вынести на пульт через провода.
Питание 220 цепи проходит с первого провода, то есть сL1 на нормально замкнутую фазу «Стоп».
Бывают ситуации, когда пускатель не действует из-за подгорания контактов. Если включить «Пуск», то произойдёт замыкание цепи питания катушки. Контакты пускателя замыкают, а на двигатель поступают три фазы. Подобные чертежи могут иметь ещё один добавочный контакт. Он называется блокировочный или контакт-самоподхвата.
Активируя пускатель кнопкой включения блокировочный контакт замыкается. А если он замкнут, то цепь питания катушки пускателя будет замкнутой, даже отжав кнопку пуска. Эксплуатация прибора будет происходить до выключения кнопки «Стоп».
подключение однофазного двигателя
Однофазный двигатель может быть коллекторным или с короткозамкнутым ротором. С коллекторным двигателем все достаточно просто: два выходящих из корпуса двигателя проводочка воткнули в розетку — подключение состоялось. С подключением однофазного двигателя с короткозамкнутым ротором придется повозиться. Все дело в определении выводов. Параллельно рабочей обмотке (РО) в однофазном двигателе подключается пусковая (ПО) для создания хоть какого-то вращающегося магнитного поля.Однофазный двигатель с четырьмя выводами имеет ПО постоянного подключения. Она действует в паре с основной, не отключаясь, только подключение делается через конденсатор для сдвига фазы (Рис.а). Схема подключения такого однофазного двигателя очень удобна, так как все проводочки легко доступны, их можно с помощью переключателя менять местами для выполнения реверса (Рис.а1). Определяются они без особого труда: вызвонить омметром и найти прозванивающиеся пары. Например, омметр определил замкнутую цепь первого вывода со вторым, а третьего — с четвертым. Значит, 1 и 2 — одна обмотка, 3 и 4 — другая. Четвертый провод соединяем со вторым (или первый с третьим, все равно) — это общий. Начало и конец не имеют значения. Далее все подключение по рисунку а или а1. Немного сложнее разобраться с двигателем с тремя выходящими жилами. В таких случаях ПО подключается кратковременно: двигатель раскрутился, и она отключается, иначе сгорит. Как происходит подобная коммутация? Для этого придумали пуско-защитное реле. Функция его заключается не только в подключении ПО, но и для создания ее оптимального времени отключения.Во время запуска через электромагнитную катушку проходит большой ток. В этот момент ее сердечник втягивается и воздействует на контакт, управляющий ПО (Рис, 1 и 2). После запуска ток падает, отпускается сердечник, пусковая цепь разрывается.При межвитковом замыкании в рабочей обмотке ток постоянно высокий, ПО остается в работе, двигатель задымился. Для защиты вмонтировано тепловое реле с биметаллической пластиной, отключающее Х3 от сети. Если двигатель в течение короткого времени то включится, то отключится, значит, срабатывает тепловая защита. Причина или в межвитковом замыкании, или в пониженном (повышенном) напряжении сети
Обратите внимание на странный, на первый взгляд, рисунок 3. Это крышка от пуско-защитного аппарата, на которой указана маркировка подключаемых к нему проводов и обозначена стрелка
С маркировкой все понятно — концы не перепутать при подключении. А вот стрелка указывает на положение релюшки в пространстве. она всегда должна быть обращена вверх. Будучи еще начинающим электриком, я ремонтировал стиральную машину. Перевернул ее вверх дном. Оказалось, всего-то надо ремень заменить. Заменил, попробовал включить — заработала… и задымилась, двигатель сгорел. Уже спустя некоторое время узнал, что на перевернутой релюшке контакт остается замкнутым, тогда как в нормальном положении под силой тяжести после отключения катушки он отпадает вниз. А у меня как раз в перевернутой машине оказался внизу. Просто надо было для пробного включения перевернуть аппарат, чтобы стрелка вновь показывала наверх. Как же выполняется подключение однофазного двигателя с неизвестными тремя проводами. Сопротивление ПО (Х1-Х3) в несколько раз больше сопротивления РО (Х2-Х3). Х3 выходит от места соединения ПО и РО (см. Рис. б). Сначала промаркируем жилы, чтоб не запутаться (те же Х1, Х2 и Х3). Замеряем сопротивление, например, между Х1 и Х2, получилось, скажем, 60 Ом. Замерили Х1-Х3 — 45 Ом. Между Х2 и Х3 — только 15. Все это записали. Смотрим самое большое (60) — общее всех обмоток. 15 — рабочая обмотка, 45 — пусковая. Находим тот проводок, с которым остальные два показывают 15 и 45 Ом. Это будет наш Х3. Можно открыть крышку двигателя и визуально определить ПО: она намотана более тонким сечением. Вот, пожалуй, и все!
Как подключить однофазный электродвигатель – схема с конденсатором
Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота — 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т.п.
Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.
Схема подключения «Треугольник»
Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 — рабочая, 3 –фаза.
Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.
Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.
Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.
Нужно понять — сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.
Схема подключения «Треугольник» и «Звезда»
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.
Со всеми этими
Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВСподключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике
Как подключить двигатель от стиральной машины автомат
Куда можно подключить мотор от машинки автомат? Вариантов огромное количество, а самое главное то, что если есть данные о работе таких изделий и о правилах подключения, то вполне возможно собрать новые устройства, способные пригодиться в хозяйстве. Не стоит выкидывать стиралки до того, пока они не будут полностью разобраны, так как внутри может быть огромное количество полезных принадлежностей. К примеру, при поломке машинки марки Индезит можно получить двигатель мощностью в 430 Вт, способный развивать скорость до 11500 оборотов в минуту. Естественно, использовать его можно только при условии, что деталь полностью исправна и не станет причиной поломки новой техники. Идей того как можно использовать двигатель старой машинки существует неимоверное количество, причем даже стиралка малютка имеет свой движок способный принести пользу.
Варианты:
- Наиболее простой вариант – это изготовление точильного станка, который позволит затачивать такие предметы как ножницы, ножи и тому подобные колющережущие предметы. Включается такой наждак только после того как мотор будет тщательно закреплен на поверхности прочного основания, а также установки вала на точильном камне или шлифовального круга. После сборки можно подсоединять оборудование к сети.
- Если ведется строительство, например, частного дома или заливание окружающей территории бетоном, то может потребоваться бетономешалка. Именно для нее можно использовать электродвигун. Переделать стиралку в бетономешалку не сложно, и для этого нужно еще отсоединить бак от стирального оборудования.
- Вибростолы с использованием такого мотора, позволят изготавливать шлакоблок, стоимость которого далеко не маленькая, а своими руками можно не плохо сэкономить.
- На участке много травы? Есть кролики, которым требуется трава? Регулярно проводится покос сена? Если правильно использовать моторчик, то он сможет стать отличным заменителем триммера и позволит убирать траву быстро, просто и не потратив на это много средств. Этот аппарат считается просто необходимым тем, кто проживает за пределами города и особенно для тех, кто любит заниматься сельским хозяйством.
Это лишь минимальный список того, что можно сделать, если использовать деталь от стиралки в виде электродвигателя. Могут потребоваться различные насадки, дополнительные емкости или же вовсе вспомогательные детали, но если иметь идею, то создать новое оборудование получится быстро и без вложений.
Варианты схем включения — какой метод выбрать?
В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:
- пусковым,
- рабочим,
- пусковым и рабочим конденсаторами.
Наиболее распространенной методом является схема с пусковым конденсатором .
В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .
Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.
Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.
Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.
Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.
Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.
Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .
В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.
Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.
При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.
Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.
В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.
Recommendations
ну почему нет, у меня в детстве сверлилка для плат и точилка были сделаны из вертиляторов, сверлышко поправить или там шило заточить хватает, стамеску уже затруднительно и то заточить можно
Это коллекторный двигатель. Может работать от сети постоянного или переменного тока. Такие двигатели были задуманы для швейного производства и приводов масляных выключателей на подстанциях. Они доукомплектовывались редукторами и за счет коэффициента передачи на валу увеличивался рабочий момент. Кроме прочего путем снижения напряжения регулировалась скорость вращения двигателя. В вашем случае редуктор не нужен и остается надеяться получится или нет. Для точила используются двигатели трехфазные от 250 ватт. Если такой двигатель подключить к сети 220 В с конденсаторами то в идеале он отдаст 60 % мощности или 250х0.6=150 ватт. При такой мощности уже слабо тянет наждак. А в вашем случае еще в 2 раза меньше. Думаю что не стоит связываться с таким двигателем. МУН 2 притягивает к себе своим обманчивым большим внешним видом. А вид большой что это движок коллекторный. Токарный по дереву болванку крутить будет, Будет и строгать если снимать не большую стружку
не помешает в хозяйстве для различных нужд
предложи швейникам-отлично подходит для промышленных машинок и оверлоков, особенно для тех кто работает дома…продай а себе купишь точило
Полировалку на машину из него, обороты скинуть и вперед нафигачивать ))Точило реально только по мелочи, для себя. а токарник — он ротор отбросит и уйдет в закат, растворяясь облаком дыма на рассвете
Только на ветродуйку воздух по квартире гонять
Если в быту точить, ножницы, ножи, карандашики итд, то пойдет и 80 вт. Токарка …ну если мелочь.
про токарный забудь, точило.ну как бы что точить им-слабое. Посмотри мощность болгарки в магазине и сравни сколько на болгарке и сколько на твоем движке Вт…
У меня 80 вт точило-для своих целей служит 30 лет.
Электродвигатели разделяются на две группы – коллекторные и бесколлекторные двигатели. В свою очередь коллекторные электродвигатели бывают универсальные и постоянного тока, а бесколлекторные – синхронными или асинхронными.
Электродвигатель МУН относится к коллекторным универсальным двигателям. Таким образом он может работать и от постоянного и от однофазного переменного тока. Исключение составляют двигатели МУН-1Т (работает только от сети однофазного переменного тока), МУН-2П и МУН-2ПС (работают только от постоянного тока).
Универсальный коллекторный электродвигатель состоит из постоянного магнита на статоре, электромагнита на роторе и щеточно-коллекторного узла с двумя ламелями (пластинами) и двумя щетками. Самый простой УКД имеет на роторе две «мертвые точки» – два положения ротора, при котором невозможен самозапуск, а также неравномерный крутящий момент. Угловая ширина щеток и угловой зазор между ламелями (пластинами) коллектора приводят к тому, что в конструкции двигателя есть части обмотки ротора постоянно динамически короткозамкнуты щетками. Количество таких частей, которые не участвуют в создании крутящего момента, соответствует количеству щеток.
Достоинства и недостатки
По сравнению с двигателем постоянного тока, УКД обладает такими достоинствами:
- непосредственное включение в сеть, для УКД не нужен выпрямитель;
- меньший пусковой момент;
- более простая управляющая схема, при выходе из строя которой двигатель сохраняет работоспособность, однако сразу включается на всю мощность.
Недостатки: