8 самых известных типов двигателей в мире и их отличия

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.


Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

Как выбрать контрактный двигатель – 5 главных ошибок

  1. Поиск мотора на ближайшей разборке. Как правило, это будут автомобили с пробегом по РФ и соответствующим обслуживанием. Контрактный двигатель нужно приобретать у тех, кто возит запчасти из-за границы.
  2. Покупка самого дешевого варианта. Стоимость мотора вам возместят (или заменят по гарантии), но вот стоимость установки – нет. Сэкономив пару тысяч на покупке, вы можете потерять тысяч 10 на установке.
  3. Покупка без фото. Необходимо сравнить двигатель, который вы заказываете из-за рубежа, с тем, что установлен на вашем авто.
  4. Перевод денег на карту частного лица незнакомому продавцу. Обязательно заключение договора и отправка денег на счет юр. лица.
  5. Установка двигателя в гаражном сервисе. Вам просто откажут в замене агрегата или возврате денег, ссылаясь на неквалифицированную установку, повлекшую повреждение мотора.

Контрактный двигатель – как поставить на учет?

C 2011 двигатель в РФ считается запчастью. Его постановка на учет отменена. Если вы меняете мотор на аналогичный по характеристикам, то никаких регистрационных действий производить не нужно. Проблемы могут возникнуть, если вы купили ДВС с угнанного автомобиля и каким-то образом сотрудники ГИБДД обнаружат это. Чтобы обезопасить себя сохраняйте договор с продавцом.

Если вы устанавливаете двигатель, отличный от установленного ранее по объему, то необходимо:

  • обратиться в ГИБДД с заявлением на внесение изменений в конструкцию;
  • обратится в экспертную организацию (такую, как НАМИ), где вам выдадут документ о возможности замены двигателя;
  • заменить агрегат на СТО, имеющей соответствующую лицензию и получить там акт о выполненных работах. Взять у них копии сертификатов и лицензии;
  • пройти техосмотр и получить диагностическую карту;
  • предоставит в ГИБДД полученные документы и автомобиль на осмотр.

Покупая контрактный двигатель, и зная, на что обратить внимание, вы обезопасите себя от вероятных проблем. Не стоит бояться таких агрегатов. Просто тщательно подходите к их подбору, и все будет хорошо

Просто тщательно подходите к их подбору, и все будет хорошо.

Стоит ли покупать контрактный двигатель?

Такое устройство снимают с автомобилей, которые эксплуатировались за рубежом. При ввозе агрегата на территорию РФ требуется соблюдать законные процедуры (таможенные и пр.). Благодаря этому ДВС будет иметь гарантию и все нужные документы (без них брать мотор не стоит). Запчасти, купленные на разборках, в большинстве случаев продаются нелегально.

Выгода покупки “заморского” узла очевидна, когда встает вопрос о дорогостоящем капитальном ремонте. Помимо больших затрат, есть риск некачественного ремонта.

Когда вы приобретаете контрактный двигатель, это всегда оригинал (бывший в употреблении). Если он пришел из Японии или Европы, то в качестве сомневаться не приходится. В этих странах жесткие требования к прохождению ТО. Там продавают мотор в хорошем состоянии, потому что ремонт обходится дорого. Дешевле сдать авто в разборку и купить новое транспортное средство со скидкой.

[править] Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

  • чтобы корпус корабля оставался нейтрально заряженным;
  • чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата.

Как работает жидкостный ракетный двигатель

Чтобы получить полезное действие, достаточное для прорыва в космос, нужно получить большое количество энергии − эффективно сжечь большое количество топлива. Как известно, любой процесс горения представляет собой химическую реакцию окисления. И если на Земле для других видов тепловых двигателей в качестве окислителя можно использовать атмосферный кислород, то для ракетного двигателя, и тем более в космосе, окислитель и горючее надо иметь непосредственно на ракете, и лучше всего в максимально плотном и удобном для подачи жидком виде. В РД-107/108 в качестве окислителя используется жидкий кислород, а в качестве горючего – керосин.

Фото: Объединенная двигателестроительная корпорация

В камере сгорания подаваемые специальными насосами в нужном количестве и с необходимым давлением окислитель и горючее смешиваются и сгорают. Горячие (с температурой в несколько тысяч градусов) продукты сгорания в конструкции особого профиля – сверхзвуковом сопле Лаваля – разгоняются до многократно сверхзвуковых скоростей и уходят в пространство. Если умножить сумму секундных расходов масс горючего и окислителя на скорость выхода продуктов сгорания из сопла, можно в первом приближении получить силу тяги двигателя. Так, в общих чертах, можно описать схему работы жидкостного ракетного двигателя. 

Что такое контрактный мотор

Контрактный двигатель — силовой агрегат, бывший в употреблении на территории стран Евросоюза, Японии, США и т.д., который официально завезен на территорию стран СНГ. Другими словами, это рабочий двигатель б/у, законно снятый с автомобиля за границей и ввезенный на территорию другой страны с учетом уплаты всех налогов и ввозных пошлин. Такой мотор может быть как бензиновым, так и дизельным, роторным и т.п.

Необходимо добавить, что приобретение контрактного б/у двигателя предполагает обязательное наличие сопроводительных документов, подтверждающих легальность завоза и последующей реализации данного товара.

Дилеры, которые специализируются на доставке и продаже контрактных б/у моторов, берут на себя ряд определенных договорных обязательств касательно сроков доставки, размера предоплаты, комплектации и состояния ДВС, а также гарантий на привезенный двигатель и других условий. Еще раз напомним, контрактный силовой агрегат завозится полностью легально, то есть имеет полный пакет документов для прохождения таможенной очистки и последующей регистрации в органах Госавтоинспекции.

Схема работы профессиональных компаний или мелких организаций по продаже контрактных двигателей является приблизительно одинаковой. Главной задачей для таких продавцов является поставка качественного товара по сходной цене, причем в максимально короткие сроки. Ключевым моментом является формирование хорошей профессиональной репутации, после чего поток клиентов растет, что позволяет получать стабильную прибыль.

Для решения задачи у большинства дилеров имеются свои механики и специалисты по ремонту двигателей, которые находятся в Японии, Германии, США, Франции и т.д. Зачастую, это бывшие граждане СНГ, которые постоянно или временно находятся в конкретной стране и работают в связке с иностранными специалистами. Реже фирма может отдельно послать своего сотрудника для самостоятельного подбора необходимого контрактного двигателя.

После подбора двигатели проверяются на специальном стенде, после чего отбираются оптимальные варианты. Затем агрегат доставляется в СНГ, где мотор снова поверяется. Крупные дилеры также имеют стенд для полной проверки двигателя, мелкие организации могут ограничиться повторными замерами компрессии, снятием ГБЦ и визуальным осмотром, полагаясь на заграничных спецов. Если агрегат прошел проверку, тогда продавец выдает покупателю документы для регистрации приобретенного ДВС в Госавтоинспекции, а также гарантию на контрактный мотор, которая обычно составляет 6 мес. или 10 тыс. км пробега в зависимости от того, что наступит раньше.

Отметим, что так работают крупные фирмы и проверенные продавцы, которые дорожат имиджем компании и заботятся о своей репутации. Давайте поговорим о возможных нюансах и рисках, с которыми покупатель контрактного двигателя может столкнуться на практике.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

Виды химических двигателей

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Основные характеристики

Синхронные моментные двигатели, независимо от размера, имеют бесщеточное исполнение, ротор с постоянным магнитом (4+ полюса), прямой привод, небольшой вес.

В линейке AT Drive представлены 3-х фазные высокомоментные электродвигатели, которые имеют следующие характеристики:

  • диаметр (мм): 50, 69, 85, 115;
  • номинальный момент (мНм): 250 –7800 ;
  • скорость (об/мин): 700 – 5600.

Доступное пространство и значение крутящего момента помогают выбрать ширину и диаметр мотора.

Обычно моментные двигатели имеют малую высоту и большой диаметр (зависимость момента от диаметра квадратичная, а от высоты – линейная). При одинаковом моменте, двигатель небольшой высоты со значительным диаметром по массе и габаритам будет в лучше, чем более высокий аналог малого диаметра.

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение. 

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

https://youtube.com/watch?v=yZ8w_WEMbEU

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Устройство двигателя внутреннего сгорания

Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.

Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.

  1. Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.

    Блок цилиндров

  2. Кривошипно-шатунный механизм, он же КШМ – узел, в котором происходит преобразование прямолинейного движения поршня во вращательное. Состоит из коленвала, поршней, шатунов, маховика, а также подшипников скольжения (вкладышей), на которые опирается коленвал и крепления шатунов.

    Кривошипно-шатунный механизм: 1 — цилиндр; 2 — маховик; 3 — шатунный подшипник; 4 — коленчатый вал; 5 — колено; 6 — коренной подшипник; 7 — шатун.

  3. Газораспределительный механизм (ГРМ) – это система подачи в цилиндры топливно-воздушной смеси и отвода выхлопных газов. Состоит из распредвалов, клапанов с коромыслами или штангами, ремня ГРМ, благодаря которому вся система работает синхронно с оборотами коленвала.

    Газораспределительный механизм

  4. Система питания – это узел, в котором происходит подготовка топливно-воздушной смеси, которая затем подается в камеры сгорания. В зависимости от конструкции система подачи топлива может быть карбюраторной (одна форсунка на двигатель), инжекторной (форсунки установлены перед впускным клапаном каждого цилиндра), с непосредственным впрыском (форсунка установлена внутри камеры сгорания). Включает в себя топливный бак с фильтром и насосом, карбюратор (опционально), впускной коллектор, форсунки, ТНВД (в дизельных двигателях), воздухозаборника с воздушным фильтром.

    Система питания

  5. Система смазки двигателя – обеспечивает подачу смазки в каждый из узлов трения, а также на участки, требующие дополнительного охлаждения (например, на нижнюю часть поршней). Состоит из масляного насоса, подключенного к коленвалу, системы трубок и каналов, выходящих на пары трения, масляного фильтра, масляного поддона. В зависимости от конструкции различаются двигатели с «сухим» и «мокрым» картером. У первых емкость для сбора моторного масла расположена отдельно, во вторых – непосредственно под двигателем.

    Система смазки двигателя: 1 – масляный насос; 2 – пробка сливного отверстия картера; 3 – маслоприемник; 4 – редукционный клапан; 5 – отверстие для смазывания распределительных шестерен; 6 – датчик сигнальной лампы аварийного давления масла; 7 – датчик указателя давления масла; 8 – кран масляного радиатора; 9 – масляный радиатор; 10 – масляный фильтр.

  6. Система зажигания – нужна для поджига топливной смеси в камере сгорания. Применяется только на бензиновых двигателях, поскольку дизтопливо воспламеняется само от сжатия. Включает в себя свечи зажигания, высоковольтные провода, катушки зажигания, а также распределитель (трамблер) на двигателях старого типа. В современных моторах система зажигания обходится без трамблера и даже без проводов: используется конструкция «катушка на свече».

    Система зажигания двигателя: 1 – генератор; 2 – выключатель зажигания; 3 – распределитель зажигания; 4 – кулачок прерывателя; 5 – свечи зажигания; 6 – катушка зажигания; 7 – аккумуляторная батарея.

  7. Система охлаждения – заботится о поддержании заданной рабочей температуры двигателя. Жидкостная система охлаждения состоит из теплоносителя (охлаждающей жидкости, антифриза), рубашки охлаждения (сеть камер и каналов внутри блока цилиндров), теплообменника (радиатор охлаждения), водяного насоса и термостата.

    Система охлаждения

  8. Электросистема – это источники энергии, необходимой для старта двигателя и поддержания его работы. К электросистеме относится аккумуляторная батарея, генератор, стартер, проводка и датчики работы двигателя.
  9. Выхлопная система – отводит продукты сгорания из двигателя, выполняет функцию доочистки выхлопных газов, регулирует звук работы мотора. Состоит из выпускного коллектора, катализатора и сажевого фильтра (опционально), резонатора, глушителя.

Выхлопная система Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Преимущества и недостатки ДВС

  1. Если говорить о преимуществах двигателей внутреннего сгорания, то на первое место выйдет удобство для пользователя. За столетие бензиновой эпохи мы обросли сетью АЗС и даже не сомневаемся, что всегда будет возможность заправить машину и ехать дальше. Есть риск не встретить заправочную станцию – не беда, можно взять с собой бензин в канистрах. Именно инфраструктура делает использование ДВС таким комфортным.
  2. С другой стороны, заправка двигателя топливом занимает пару минут, проста и доступна. Залил бак – и едь себе дальше. Это не идет ни в какое сравнение с подзарядкой электромобиля.
  3. Способность служить долго при грамотном обслуживании – то, чем могут похвастаться знаменитые двигатели-миллионники. Регулярное своевременное ТО способно сохранить работоспособность мотора на очень долгий срок.
  4. И, конечно, не будем забывать про милый сердцу рев мощного мотора. Настоящий, честный, совершенно не похожий на озвучку современных электрокаров. Не зря же некоторые автоконцерны специально настраивали звук двигателей своих машин.
  1. Конечно, это низкий КПД — в пределах 20-25%. Самый высокий на сегодняшний день показатель КПД среди ДВС – 38%, который выдал двигатель Toyota VVT-iE. По сравнению с этим электромоторы смотрятся гораздо выигрышней, особенно с системами рекуперативного торможения.
  2. Второй значительный минус – это общая сложность всей системы. Современные двигатели давно перестали быть такими «простачками», как описывается в схеме классического ДВС. Наоборот, требования к моторам становятся всё выше, сами моторы – более точными и сложными, появляются новые технологии и инженерные решения. Всё это дополнительно усложняет конструкцию двигателя, и чем она сложней, тем больше в ней слабых мест.

Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.

И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Химия движения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: