Резонансный наддув
Настраиваемый впускной коллектор
Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно – достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент.
Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха.
Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.
КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.
Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).
Рис. 1.2. Двигатель со снятой головкой блока цилиндров.
Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.
Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).
Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.
Рис. 1.3. Поршень с шатуном.
Рекомендуем: Как оформить замену двигателя в ГИБДД в 2019 году
На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).
Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.
Примечание.
Распределительный вал двигателя приводится в действие коленчатым валом.
Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).
При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.
Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.
Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.
По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.
Принципиально новое решение
С появление автомобилей инженеры стремились создать такой агрегат, который сможет разогнать транспорт до невероятных скоростей. Разумеется, этому поспособствовал набирающий популярность автоспорт. Наверняка все читатели хотя бы раз видели фотографии старых гоночных автомобилей – вытянутый, низко посаженный транспорт, большую часть которого занимал моторный отсек. 16-цилиндровые силовые агрегаты не были редкостью в середине прошлого века. А почему использовали именно такие монструозные моторы? Причины, казалось бы, просты:
- Для увеличения мощности нужны агрегаты, в которых можно сжигать как можно большее количество топлива;
- Для увеличения количества сгораемого топлива нужно создавать двигатель большого объема.
Однако конструкторы быстро выяснили, что по мере увеличения двигателей их масса начинает становится такой большой, что дальнейшие попытки увеличить объем не приводят к желаемому результату. И это не говоря о том, что для нормального сгорания топлива в цилиндры нужно подавать большие объемы атмосферного воздуха. На 14 объемных частей воздуха должна приходиться всего одна часть топлива – именно при таком соотношении топливо будет сгорать полностью. А что если мощность двигателя можно увеличить не за счет увеличения кубатуры, а за счет подвода больших объемов воздуха? Так и родилась идея применения нагнетателей и компрессоров.
Области использования
Благодаря тому, что универсальный двигатель может иметь высокую скорость вращения при работе от однофазной сети переменного тока без использования дополнительных преобразовательных устройств, он получил широкое применение в таких домашних приборах как пылесосы, блендеры, фены и др. Так же универсальный электродвигатель широко используется в таких инструментах, как дрели и шуруповерты.
Благодаря тому, что скорость вращения универсального двигателя легко регулируется изменением величины питающего напряжения ранее он широко использовался в стиральных машинах. Сейчас благодаря развитию преобразовательной техники более широкое использование получают бесщеточные электродвигатели (СДПМ, АДКР) скорость вращения которых регулируется изменением частоты напряжения питания.
Основные параметры электродвигателя
Общие параметры для всех электродвигателей
- Момент электродвигателя
- Мощность электродвигателя
- Коэффициент полезного действия
- Номинальная частота вращения
- Момент инерции ротора
- Номинальное напряжение
- Электрическая постоянная времени
Плюсы и минусы двойного турбонаддува
Битурбо редко когда устанавливается на маломощные двигатели. В основном это оборудование, которое полагается для мощных машин. Только в этом случае возможно снимать оптимальный показатель крутящего момента уже на более низких оборотах. Также небольшие габариты ДВС не являются помехой для увеличения мощности силового агрегата. Благодаря двойному турбонаддуву достигается приличная экономия топлива по сравнению с атмосферным аналогом, развивающим идентичную мощность.
С одной стороны польза от оборудования, стабилизирующего основные процессы или повышающего их эффективность, есть польза. Но с другой стороны такие механизмы не лишены дополнительных минусов. И двойной турбонаддув не исключение. Такая система не только имеет положительные стороны, но и некоторые серьезные недостатки, из-за которых некоторые автомобилисты отказываются приобретать подобные машины.
- Основной плюс системы – устранение турбоямы, которая характерна для всех ДВС, оснащенных обычной турбиной;
- Двигатель легче переходит на мощностной режим;
- Разница между максимальным крутящим моментом и мощностью значительно сокращается, так как за счет увеличения давления воздуха во впускной системе большая часть ньютонов остается доступной на большем диапазоне оборотов двигателя;
- Уменьшается расход топлива, необходимого для достижения максимальной мощности;
- Так как дополнительная динамика авто доступна на меньших оборотах ДВС, водителю приходится не так сильно его раскручивать;
- За счет снижения нагрузки на ДВС уменьшается износ смазочных материалов, а также система охлаждения не работает в повышенном режиме;
- Выхлопные газы не просто удаляются в атмосферу, а энергия этого процесса используется с пользой.
Теперь обратим внимание на ключевые недостатки твинтурбо:
- Основной минус заключается в сложности конструкции впускной и выпускной систем. Особенно это касается новых модификаций систем;
- Этот же фактор влияет на стоимость и обслуживание системы – чем сложнее механизм, тем дороже его ремонт и настройка;
- Еще один минус тоже связан со сложностью устройства систем. Так как они состоят из большого количества дополнительных деталей, то и узлов, в которых может образоваться поломка также больше.
Отдельно следует упомянуть климат местности, в которой эксплуатируется турбированная машина. Так как крыльчатка нагнетателя раскручивается порой выше 10 тысяч об/мин, она нуждается в качественной смазке. Когда автомобиль оставляется на ночь, смазка уходит в поддон, поэтому большинство деталей агрегата, в том числе и турбина, становятся сухими.
Если утром запустить мотор и эксплуатировать его с приличными нагрузками без предварительного прогрева, можно убить нагнетатель. Причина заключается в том, что сухое трение ускоряет износ трущихся деталей. Чтобы исключить данную проблему, прежде чем выводить мотор на высокие обороты, нужно немного подождать, пока масло прокачается по всей системе, и достигнет самых отдаленных узлов.
Летом на это не приходится тратить много времени. Масло в поддоне в этом случае обладает достаточной текучестью, чтобы насос смог его быстро прокачать. А вот зимой, особенно в сильные морозы, этот фактор нельзя игнорировать. Лучше потратить пару минут на прогрев системы, чем спустя небольшой промежуток времени выбрасывать приличную сумму на покупку новой турбины. Дополнительно следует упомянуть, что из-за постоянного контакта с выхлопными газами крыльчатка нагнетателей может раскаляться до тысячи градусов.
Если механизм не получит должной смазки, которая параллельно выполняет функцию охлаждения устройства, его детали будут тереться друг о друга всухую. Отсутствие масляной пленки причинит резкое повышение температуры деталей, обеспечив им тепловое расширение, и как следствие их ускоренный износ.
Во-вторых, так как крыльчатки нагнетателей непосредственно контактируют с выхлопными газами, качество топлива должно быть высоким. Благодаря этому на лопастях не будет скапливаться нагар, мешающий свободному вращению крыльчатки.
В завершение предлагаем небольшое видео о разных модификациях турбин и их отличиях:
Семён расскажет! Твин ТУРБО или большой СИНГЛ? 4 турбины на один мотор? Новый сезон технички!
Watch this video on YouTube
Последовательный наддув Bi-turbo и его преимущества
Би-турбо (bi-turbo) – она же секвентальный или последовательный наддув, т.е. система наддува двигателя внутреннего сгорания, которая состоит из двух последовательно включаемых в работу турбин. В такой системе применяют две турбины, одну меньшего размера другую большого. Это сделано для того, чтобы маленькая турбина, которая раскручивается значительно быстрее, вступая в работу первой, обеспечивает хорошую тягу на более низких оборотах, затем, при достижении более высоких оборотов двигателя, раскручивается вторая , большая турбина, и нагнетает гораздо больший объем воздуха. Такая схема во-первых уменьшает так называемый турболаг (или турбояму – т.е. движение автомобиля с выключенными нагнетателями), образуя более ровную динамическую характеристику машины, без излишнего рывка, свойственного схемам с одной большой турбиной или системам с несколькими одновременно включающимися нагнетателями, во-вторых делается возможным применение больших нагнетателей на моторах, применяемых в машинах используемых не только для гонок по трекам, но и оставляя возможность езды по дорогам общественного пользования, когда отсутствует возможность, а зачастую и необходимость поддерживать высокие обороты двигателя. Не стоит забывать и о том, что излишняя мощность в условиях города – крайне опасный фактор, так как при динамике подготовленного автомобиля возникает не только большая вероятность «догнать» соседнюю, как правило менее динамичную машину, находящуюся рядом в потоке, как и при торможении чаще смотреть назад, т.к. характеристики тормозов у гражданских автомобилей то же уступают спортивным.
Системы турбонаддува могут устанавливаются как на бензиновых, так и на дизельных агрегатах. На первых использование турбонаддува сопровождается появлением риска детонации вследствие резкого возрастания количества оборотов. Также, в результате более высокой температуры выхлопа сама система турбонаддува нагревается, что требует дополнительного ее охлаждения. На дизельных же агрегатах турбонаддув не имеет таких проблем. Там степень сжатия намного больше, а обороты коленвала ниже. В результате адиабатного расширения, температура выхлопа у бензиновых двигателей составляет 1000 градусов, а дизельных моторов гораздо меньше — 600. Поэтому применение турбонаддува на дизельных агрегатах является более простым и эффективным.
Проблема в том, что ротор турбокомпрессора нельзя сделать большим- чем больше диаметр турбины, тем выше ее момент инерции. Стало быть, даже если водитель при разгоне более резко нажмет на педаль акселератора, быстрого ускорения как у атмосферного двигателя, он не получит, потому что придется подождать не только, пока коленвал двигателя, но затем и крыльчатка турбины наберут соответствующие обороты. Значит, турбину следует сделать меньше по диаметру. Но поступление воздуха так же зависит от окружной скорости лопаток, которая тем меньше, чем меньше диаметр ротора: увеличение оборотов упирается в ограничение по предельным нагрузкам используемых материалов.
Последовательный турбонаддув
Последовательный турбонаддув в основном используется в судовых двигателях или приводах генераторов. Однако, благодаря высоким достижимым уровням мощности, этот вариант находит применение также на легковых автомобилях. При последовательном турбонаддуве при определенном увеличении нагрузки на двигатель и скорости вращения коленчатого вала вступает в действие дополнительный турбокомпрессор (см. рис. «Последовательный наддув» ).
Таким образом, по сравнению с одним турбокомпрессором, такая система позволяет получить более оптимальное использование энергии Кроме собственно турбокомпрессоров система последовательного турбонаддува включает клапаны и датчики, обеспечивающие плавный переход между режимами работы с одним или двумя турбокомпрессорами. При низких частотах вращения коленчатого вала работает только один турбокомпрессор, снабжая воздухом все цилиндры двигателя. По достижении определенной частоты вращения коленчатого вала вступает в действие второй турбокомпрессор. Затем оба турбокомпрессора работают параллельно.
Разделение подачи воздуха между двумя турбокомпрессорами позволяет обеспечить высокое быстрое повышение крутящего момента и высокую выходную мощность. Кроме того, значительно меньший момент инерции валов дополнительного турбокомпрессора меньшего размера обеспечивает более высокое быстродействие системы наддува в переходных режимах.
Следует указать, что реализация систем последовательного турбонаддува, включающих переключающие клапаны, достаточно сложна. Управление процессами переключения представляет собой достаточно сложную, но вполне выполнимую при помощи современных электронных систем управления задачу.
Последовательный турбонаддув применяется как на бензиновых, так и на дизельных двигателях.
Рекомендации
Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.
И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю прогреться.
Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто. Впрочем, подобную функцию имеют и многие охранные сигнализации.
Двухтактный двигатель
На данный момент существует два основных вида двигателей внутреннего сгорания — двухтактные и четырехтактные. По своему внешнему виду они практически не отличаются, однако двухтактные двигатели работают по совсем другому принципу. Попробуем разобраться в чем основные различия этих двух типов ДВС, и как работает двухтактный двигатель.
Принцип работы двигателя внутреннего сгорания
Для того, чтобы ваша машина могла выполнять свою прямую функцию — возить вас, ее нужно заправлять топливом: бензином, дизелем, пропан-бутаном. По топливопроводу бензин поступает в двигатель, основную работу в нем выполняют поршни и кривошипно-шатунный механизм. Бензин смешивается с воздухом, образуется смесь, которая взрывается и приводит поршни в движение, этот момент движения передается на коленчатый вал, а от него на трансмиссию.
Разница между 2-х и 4-х тактными двигателями, как видно из названия, состоит в количестве тактов, то есть в рабочем цикле двигателя. Рабочий цикл любого ДВС — это последовательность таких процессов:
- заполнение цилиндра горючей смесью;
- ее воспламенение;
- расширение газов;
- вытеснение продуктов сгорания.
В 4-тактном двигателе вся эта последовательность осуществляется за 4 такта, то есть за два оборота коленвала, в двухтактном — за один оборот. Из этого можно сделать вывод, что 2-тактные двигатели обладают большей мощностью, и это действительно так, не зря ведь их используют не только для мотоциклов, мопедов, различных квадроциклов, снегоходов и гидроциклов, но и для приведения в движение огромных морских кораблей.
Теоретически мощность должна быть выше в два раза. Например, небольшой по размерам двигатель мотоцикла может легко выдавать мощность в сто и больше лошадей, тогда как гораздо более массивный и объемный мотор какого-нибудь автомобиля класса «В» или «С» выдает 70-100 л.с.
Устройство двухтактного двигателя
Основное преимущество двухтактных двигателей состоит в простоте их конструкции. Поскольку все процессы рабочего цикла завершаются за один оборот кривошипа, отпадает необходимость в наличии сложного газораспределительного механизма, который контролирует движение впускных и выпускных клапанов. Впускной клапан закрывается и открывается из-за разницы давления, а отработанные газы выходят через выпускное окно к глушителю.
Также 2-тактный двигатель охлаждается с помощью топлива, в которое подмешан определенный процент масла. Масло нужно подбирать именно двухтактное, поскольку оно приспособлено к высоким температурам и при сгорании оставляет меньшее количество шлака и золы.
Поршень движется от нижней мертвой точки к верхней — НМТ и ВМТ. Во время движения вверх поршень сжимает поступившую воздушно-топливную смесь. В ВМТ происходит взрыв смеси и поршень начинает движение вниз, в этот момент поступает новая порция смеси. Получается, что поршень сам же и выталкивает отработанные газы, а это и является основным недостатком двухтактных двигателей, влияющим на их КПД.
Недостатки двухтактных двигателей
Несмотря на то, что инженеры пытаются их решить, недостатки все же есть и они существенные.
Самый главный из них — неэффективное использование топлива и повышенные выбросы СО2.
Если в четырехтактных двигателях на отвод отработанных газов и продуктов сгорания отводится отдельный такт, то здесь этот такт совмещается с заполнением цилиндра новой порцией горючей смеси, и как бы не старались инженеры, избежать смешивания ее с отработанными газами не удается.
Кроме того необходимо постоянно добавлять в бензин масло, причем оно довольно дорогостоящее и расходуется быстрее.
Из-за этих проблем снижается и мощность двигателя. Теоретически она должна быть в два раза выше, чем у 4-тактных ДВС, но на деле этот показатель не превышает 50-70 процентов. После 2000 года многие производители отказались от двухтактных ДВС. Однако работы по их совершенствованию постоянно ведутся.
Видео принципа работы данного типа двигателей.
Немного о китайских электротурбинах
Ни для кого не секрет, что недорогие запчасти и агрегаты преимущественно азиатского производства не всегда могут похвастать достойным качеством. Это особенно касается как обычных, так и электрических турбин. Дело в том, что недобросовестные производители экономят на материалах. Так, например, горячая часть обычного турбокомпрессора должна быть изготовлена из чугуна, легированного молибденом, хромом или же никелем. У азиатских производителей не всегда относятся серьезно к подбору материалов. В случае электротурбин особенно высоки требования к качеству электрической «начинки» агрегата. Но и это не все проблемы. Как правило они страдают от следующего:
- Плохая балансировка и несоответствие изделия допускам;
- Несоблюдение геометрии;
- Децентрализация производства: подшипники изготавливает одна фирма, корпуса – другая. Никто не отвечает за качество своей работы.
Ассортимент китайских электротурбин очень широк. По заверению продавцов, автолюбитель может купить агергат, который можно смело ставить сразу перед воздушным фильтром. Однако именно такие турбины должны быть оснащены электрическим двигателем мощность до 4 КВт. На деле их мощность меньше, да и питать такой приемник автомобильный генератор не сможет. Здесь также стоит учитывать факт «лотерейного» качества самого изделия – одна турбина может проработать долго, другая же, напротив, выйдет из строя очень быстро.
Резюмируя, отметим, что установка недорогой китайской электротурбины является весьма доступным вариантом тюнинга двигателя
Однако автолюбителям важно понимать, что результат такого тюнинга может оказаться плачевным. В лучшем случае такую турбину придется снять
Кстати, с ее установкой наверняка возникнут проблемы. Если же вы решились на эксперимент, то покупайте только изделие, характеристики которого продавец сможет привести: диапазон работы крыльчатки, сила тока, напряжение, диапазон давления , напряжение линейного управления. Часто в продаже можно найти турбины, характеристики которых вовсе не приводятся – мы категорически не советуем покупать их.