Гидрокомпенсаторы
Гидрокомпенсаторы
В двигателе 6A12 используются гидрокомпенсаторы. Они предназначены для автоматической регулировки теплового зазора между элементами самого двигателя (клапанные механизмы) и системы ГРМ. В обычных моторах надо вручную настраивать зазоры, что требует высокой квалификации и регулярности.
Клапаны в двигателе работают в крайне тяжёлых условиях. Они испытывают максимальные ударные нагрузки и подвержены высоким температурным воздействиям. Не удивительно, что по истечении определённого времени требуется замена гидрокомпенсаторов, не выдерживающих усиленного режима функционирования.
Если своевременно не провести замену, то это грозит неправильными зазорами:
- недостаточный зазор клапана впуска не позволит осуществить полное закрытие, и топливно-воздушная смесь начнёт сгорать прямо во впускном коллекторе, что априори приведёт к падению мощности силового агрегата и потреблению большого количества бензина;
- увеличенный зазор же вызовет повышенные ударные нагрузки, что приведёт к металлическим стукам, износу клапанов, распредвала и других элементов ГРМ.
Основные причины выхода из строя гидрокомпенсаторов следующие:
- уровень лубриканта в картере повышен или недостаточен;
- внутренние поверхности механизмов чересчур загрязнены и содержат остатки металла и масла;
- составные компоненты подверглись естественному износу.
Определить неполадки гидрокоменсаторов несложно. Как правило, они в неисправном состоянии начинают издавать нехарактерные звуки при работающем моторе. Шум чем-то напоминает клапанный стук, но при внимательно прослушивании фонендоскопом удастся определить сильный стук именно в районе расположения механизмов.
Автомобильный фондескоп
Выявить неполадки с гидрокомпенсаторами можно и другим, более простым способом. Надо взять металлический прутик, посередине которого приделать деревянную ручку. На одном из концов приспособления установить пустую банку из-под пива (она будет выполнять функцию резонатора). Второй конец самодельного фонендоскопа приложить к клапанной крышке, а банку — к уху. Если будут слышны усиленные стуки, повышающие по мере нарастания оборотов двигателя, это и есть признаки неисправных гидрокомпенсаторов. Таким образом, можно даже определить конкретный элемент с дефектом.
После снятия деталей рекомендуется удостовериться в их неисправности. Поэтому надо гидрокомпенсатор разобрать, и проверить все внутренние составляющие на степень износа. Вообще, если механизм легко сжимается пальцами руки, то его восстановить уже невозможно. Поможет только замена.
Владельцам двигателя 6А12
Я думаю будит интересно всем. Каждый обязательно выделит что-то новое для себя.
Двигатель 6A12 Mitsubishi имеет уникальное сочетание топливной экономичности, приближающейся к дизелю, и мощности бензинового мотора.Двигатель 6A12, впервые разработанный фирмой Mitsubishi Motors для серийного автомобиля в 1995 г. и появившийся в результате 15 лет исследований и испытаний — одно из наиболее значимых и революционных достижений в области моторостроения за последнее десятилетие.В высокоэффективном двигателе 6A12 внедрены более 200 запатентованных новейших технологий, обеспечивает превосходное сочетание высокой мощности, топливной экономичности и низкой токсичности отработавших газов. Двигатель 6A12 будет широко применяться на всех автомобилях XXI века.
Двигатель 6A12 c непосредственным впрыском бензина обеспечивает следующие преимущества:— Сочетание лучшей топливной экономичности (при спокойной езде со скоростью до 120 км/ч) и мощности бензинового мотора (при ускорении).— Сокращенное время холодного пуска.— Лучшие экологические показатели, чем у традиционных «инжекторных» моторов (меньше выброс СО2 и оксидов азота).— Обеспечивает высокую литровую мощность*, т.к. двигатель может работать при большей степени сжатия за счет эффекта охлаждения воздуха при испарении топлива в цилиндрах двигателя.
Двигатель 6A12 оснащен системой непосредственного впрыска бензина в камеры сгорания, что позволяет обеспечивать точное и высокочувствительное управление смесеобразованием и сгоранием даже после закрытия клапанов. Это позволяет двигателю 6A12 работать как на режиме сверхбедных топливовоздушных смесей (30-40:1, что недоступно для обычных «инжекторных» двигателей), так и на обогащенных смесях на мощностном режиме, что позволяет двигателю развить высокую мощность и крутящий момент. Кроме того за счет эффекта охлаждения воздушного заряда при испарении впрыснутого топлива улучшается наполнение цилиндров воздухом, а также предотвращается детонация, что позволяет повысить степень сжатия на двигателе 6A12, а следовательно и его удельную мощность. Три режима топливоподачи обеспечивают точное управление процессом сгорания: для обеспечения высокой удельной мощности и топливной экономичности двигатель 6A12 меняет рабочий процесс, изменяя режим топливоподачи.При разгоне и на высоких скоростях двигатель 6A12 автоматически переключается на мощностной режим работы (достигается стехиометрическое воздушно-топливное отношение 14,7:1). Испаряющееся топливо охлаждает воздух в цилиндре, что улучшает его наполнение, а также снижает вероятность возникновения детонации. Этот благоприятный эффект позволяет достичь высокой степени сжатия (а значит и высокой мощности). При интенсивном разгоне для увеличения крутящего момента на «низах» двигатель 6A12 переключается на режим двухстадийного впрыска. Во время такта впуска впрыскивается небольшое количество топлива, чтобы охладить воздух. Затем во время такта сжатия впрыскивается основная часть топлива, обогащая топливовоздушную смесь (отношение воздух/топливо достигает 12:1), которая интенсивно сгорает. Тем самым достигается высокая мощность и крутящий момент двигателя 6A12.
Технические характеристики двигателя 6A12 MPI:
Модель двигателя (Engine Code): 6A12, бензиновый (Gasoline)Объем двигателя, см3 (Displacement (cc): 1998Мощность двигателя, л.с/оборотов-мин (Power (bhp/rpm): 150/7500Крутящий момент, н-м/об.мин (Torque (ft/lbs): 180/4000Тип двигателя: V type 6 cylinder DOHC 24 valveСтепень сжатия (Compression Ratio): 10Диаметр (Bore)/Ход поршня(Stroke), мм: 78.4/69
Зачем вообще нужны фазовращатели?
Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».
Узкие фазы
– если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики. Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).
Широкие фазы
– когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов
Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими»
Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он выделяется, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.
НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не буде нормально работать на малых оборотах.
Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПОПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.
Что такое MIVEC
MIVEC, Mitsubishi Innovative Valve timing Electronic Control system: система электронного управления подъемом клапанов фирмы Mitsubishi, разновидность технологий VVL и CVVL. Не включает в себя технологию фазовращения.
Была впервые внедрена в 1992 году на двигателе 4G92 (16-клапанный 4-цилиндровый DOHC объемом 1.6). Первыми машинами, оснащенными этим двигателем, были хэтч Mitsubishi Mirage и седан Mitsubishi Lancer. Технология MIVEC также была первой CVVL-технологией, внедренной для дизельных двигателей легкового сегмента. Особенностью технологии MIVEC является отсутствие фазовращения (сдвига фаз).
Принцип MIVEC
Система MIVEC обеспечивает работу клапанов двигателя в различных режимах (с различной высотой подъема и степенью перекрытия фаз), в зависимости от оборотов и с автоматическим переключением между режимами. В базовой версии технология подразумевала два режима (см. рисунок внизу), в последних версиях обеспечивается непрерывное изменение (управление и впуском и выпуском)
Физический смысл технологии следующий:
На низких оборотах разница в подъеме клапанов стабилизирует сгорание, способствует уменьшению расхода топлива и эмиссии, повышает крутящий момент.
На высоких оборотах увеличение времени открытия клапанов и высоты их подъема значительно увеличивает объем впуска и выпуска топливно-воздушной смеси (позволяет двигателю «дышать полной грудью»).
Конструкция системы MIVEC
Ниже рассматривается двигатель с одним распредвалом (SOHC), конструкция MIVEC для которого сложнее, чем для двигателя с двумя распредвалами (DOHC), поскольку для управления клапанами используются промежуточные валы (коромысла) mikedVSmiked.
Механизм клапана для каждого цилиндра включает:
«низкопрофильный кулачок» (low-lift) и соответствующий рокер коромысла для одного клапана;
«кулачок среднего профиля» (medium-lift) и соответствующий рокер коромысла для другого клапана;
«высокопрофильный кулачок» (high-lift), который центрально расположен между низким и средним кулачком;
Т-образный рычаг, который является единым целым с «высокопрофильным кулачком».
На низких оборотах крыло Т-образного рычага двигается без какого-либо воздействия на рокеры; впускные клапана соответственно управляются низко- и среднепрофильными кулачками. При достижении 3500 об/мин поршни в коромыслах сдвигаются гидравликой (давлением масла) так, что Т-образный рычаг начинает давить на оба рокера и оба клапана таким образом управляются высокопрофильным кулачком.
Для чего нужен MIVEC
Изначально MIVEC создавался для повышения удельной мощности двигателя за счет следующих эффектов:
снижение сопротивления выпуска = 1,5%;
ускорение подачи смеси = 2,5%;
увеличение рабочего объема = 1,0%;
управление высотой подъема клапанов = 8,0%
Итого повышение мощности должно составлять около 13%. Но внезапно выяснилось, что также MIVEC позволяет экономить топливо, улучшает экологические показатели и стабильность работы двигателя:
На низких оборотах расход топлива снижается за счет низкообогащенной смеси и рециркуляции отработанных газов (EGR). При этом, по утверждению маркетологов Mitsubishi, MIVEC позволяет обеднить смесь по соотношению воздух/топливо еще на единицу (до 18,5) при лучших показателях эффективности.
При холодном пуске система обеспечивает обедненную смесь и позднее зажигание, быстрее прогревает катализатор.
Для снижения потерь на низких оборотах, вызванных сопротивлением системы выпуска, применен двойной выпускной коллектор, включающий передний катализатор. Это позволило достичь снижения выбросов до 75% по японским стандартам.
Технология MIVEC задействована по меньшей мере в следующих двигателях MMC: 3A91, 3B20, 4A90, 4A91, 4A92, 4B10, 4B11, 4B12, 4G15, 4G69, 4J10, 4N13, 6B31, 6G75, 4G19, 4G92, 4G63T, 6A12, 6G72, 6G74.
Двигатель V8 — распространение по миру
Из отечественных автомобилей двигателем V8 мог похвастать ГАЗ-13 «Чайка»
После войны эволюция V8 продолжалась. Моторы постоянно росли в объеме и мощности. Еще одним значимым достижением американской конструкторской школы, можно считать первый в мире легковой верхнеклапанный двигатель V8.
Но нельзя считать, что легковые V8 разрабатывались исключительно только в США. В Европе начиная с середины 50-х, восьмерки также постепенно вошли в обиход, правда в основном на спортивных и представительских автомобилях. В нашей стране моторы V8 выпускались в основном для правительственных и специальных автомобилей и грузовиков.
Сегодня популярность V8 значительно снизилась. Связано это со многими факторами. Но как бы не хотелось некоторым воинствующим эко-активистам, пока существует ДВС, будет существовать и V8.
РубрикаДвигатели МирМеткиCadillac De Dion-Bouton Ford Toyota 2000GT: первый спорткар компании Тойота Suzuki C2: кей-кар с V8 под капотом
Двигатель V8 — американская история
Ford V8 пользовался популярностью не только у порядочных граждан, но и у бандитов. Прежде всего за свой мощный мотор
Первый серийный американский автомобиль с двигателем V8 выпустила компания Cadillac в 1914 году. Под капотом Cadillac Type 51 находился 5,1-литровый мотор мощностью 70 л.с. Очень внушительный показатель для тех лет! Инженеры Кадиллак отлично поработали и сделали двигатель намного надежнее в работе чем его французский аналог.
Между тем выпуская Cadillac Type 51, компания шла на серьезный риск. Малоизвестный и дорогой мотор, вряд ли предвещал серьезный рыночный успех модели. Но ко всеобщему удивлению новинка разошлась тиражом в 13 тыс. единиц. Это стало спусковым крючком в «гонке цилиндров» среди американских автопроизводителей и поспособствовало повсеместному распространению двигателей V8 в США.
BMW V8
BMW на протяжении многих десятилетий подгонял V8 к своим роскошным моделям, а два из лучших были 4,6-литровым агрегатом S65 414 л.с. в старом E90 M3 и 4,9-литровым двигателем S62 мощностью 400 л.с., установленным в конце 90-х годов M5. Они обозначили вершину развития без турбо V8 в BMW, но последний 4,4-литровый двухтурбинный S63 – современный шедевр. В стандартной форме он составляет громадный 600 л.с. и обеспечивает новейшее поколение M5 огневой мощи, чтобы взять на себя суперкары. Он мгновенно реагирует на входы дроссельной заслонки и с крутящим моментом 553 Н/м, обеспечивает ускорение в передаче.
Принцип работы
Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с .
Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ, а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.
Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.
Как обычно процессом руководит , которая собирает данные с различных , таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.
Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).
Двигатель Mitsubishi 6A12
Изобретенный японскими моторостроителями концерна Mitsubishi Motors Corporation (ММС) двигатель 6A12 неоднократно усовершенствовался. Несмотря на значительные изменения индекс оставался постоянным.
Описание
Силовой агрегат 6А12 выпускался с 1992 по 2010 годы. Представляет собой бензиновый шестицилиндровый V-образный двигатель объемом 2,0 литра и мощностью 145-200 л.с.
Устанавливался на автомобили автоконцернов ММС, Proton (производство Малайзия):
Блок цилиндров всех модификаций двигателя чугунный.
ГБЦ изготовлена из алюминиевого сплава. На разных типах двигателей в головке размещались один или два распредвала. Распредвал располагался на четырех опорах (SOHC), или на пяти (DOHC). Камеры сгорания шатрового типа.
Выпускные клапаны двигателей с системами DOHC и DOHC-MIVEC заполнены натрием.
Коленчатый вал стальной, кованый. Расположен на четырех опорах.
Поршень стандартный, из алюминиевого сплава, с двумя компрессионными и одним маслосъемным кольцами.
Система смазки с полнопоточной очисткой масла и его подачей под давлением к трущимся узлам.
Система охлаждения закрытого типа с принудительной циркуляцией ОЖ.
Система зажигания для двигателей SOHC бесконтактная с распределителем, с одной катушкой зажигания. Двигатели DOHC выпускались без распределителя.
Все модели силовых агрегатов оборудованы системой принудительной вентиляции картера, предохраняющей выброс прорвавшихся в него отработанных газов.
ДВС с системой регулирования фаз газораспределения MIVEC (система электронного управления подъемом клапанов в зависимости от оборотов коленчатого вала) обладают повышенной мощностью и низким содержанием вредных веществ в отработанных газах. Дополнительно происходит экономия топлива. О принципе работы системы можно посмотреть видео.
Технические характеристики
Характеристики трех типов двигателя сведены в таблицу.
Производитель | ММС | ММС | ММС |
---|---|---|---|
Модификация двигателя | SOHC | DOHC | DOHC-MIVEC |
Объем, см³ | 1998 | 1998 | 1998 |
Мощность, л.с | 145 | 150-170 | 200 |
Крутящий момент, Нм | 171 | 180-186 | 200 |
Степень сжатия | 10,0 | 10,0 | 10,0 |
Блок цилиндров | чугун | чугун | чугун |
ГБЦ | алюминий | алюминий | алюминий |
Количество цилиндров | 6 | 6 | 6 |
Диаметр цилиндра, мм | 78,4 | 78,4 | 78,4 |
Расположение цилиндров | V-образное | V-образное | V-образное |
Угол развала, град. | 60 | 60 | 60 |
Ход поршня, мм | 69 | 69 | 69 |
Клапанов на цилиндр | 4 | 4 | 4 |
Гидрокомпенсаторы | + | + | нет |
Привод ГРМ | ремень | ремень | ремень |
Регулирование натяжения ремня | ролик | автомат | |
Регулирование фаз газораспределения | – | – | Электронная, MIVEC |
Турбонаддув | нет | нет | |
Система питания топливом | Распределенный впрыск | инжектор | инжектор |
Топливо | Бензин АИ-95 | Бензин АИ-95 | Бензин АИ-95 |
Норма экологии | Euro 2/3 | Euro 2/3 | Euro 3 |
Расположение | поперечное | поперечное | |
Ресурс, тыс. км | 300 | 250 | 220 |
В зависимости от расположения ремней приводов ГРМ и навесных агрегатов (справа или слева) табличные данные каждого типа ДВС незначительно отличаются от приведенных.
Надежность
По имеющейся информации моторы 6А12 при соблюдении правил их обслуживания и эксплуатации легко преодолевают рубеж ресурса 400 тыс. км. Надежность силового агрегата зависит от отношения к нему со стороны водителя.
В инструкции по эксплуатации автомобиля производитель подробно раскрыл все вопросы ТО двигателя. Но здесь надо учитывать один важный момент – для России требования по техническому обслуживанию должны быть несколько изменены. Конкретно – сокращены периоды пробега между очередными ТО. Это вызвано не совсем качественными ГСМ и дорогами, отличающимися от японских.
Например, при эксплуатации ДВС в тяжелых условиях замену масла рекомендуется производить через 5000 км пробега автомобиля. Для повышения надежности двигателя это расстояние придется сократить. Или заливать в систему масло японского качества. Несоблюдение этих условий значительно приблизит капитальный ремонт.
Форумчанин Марат Дулатбаев по поводу надежности пишет следующее (стиль автора сохранен):
Honda (VTEC), Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)
Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC
(Variable Valve Timing and Lift Electronic Control ). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется –DOHCi-VTEC .
Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки. Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.
Как же работаетVTEC? Примерно до 5500 об/мин мотор работает в штатном режиме, используя только систему VTC (то есть крутит фазовращатели). Средний кулачок как бы не замкнут с двумя другими по краям, он просто вращается в пустую. И вот при достижении высоких оборотов, ЭБУ дает приказание на включение системы VTEC, начинает закачиваться масло и специальный штифт выталкивается вперед, это позволяет замкнуть все три «кулачка» сразу, начинает работать самый высокий профиль – теперь именно он давит пару клапанов, на которые рассчитана группа. Таким образом, клапан опускается намного больше, что позволяет дополнительно наполнить цилиндры новой рабочей смесью и отвести больший объем «отработки».
Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.
Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).
НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!
Для чего необходим MIVEC
С самого начала MIVEC создавали для того, чтобы повысить удельную мощность двигателя за счет таковых эффектов: увеличения рабочего объема = 1,0%; ускорения подаваемой смеси = 2,5%; снижения выпускного сопротивления = 1,5%; регулировки высотой подъема клапанов = 8,0%
В итоге мощность должна возрасти приблизительно на 13%. Но вдруг выяснилось, что MIVEC также позволяет сэкономить топливо, улучшает экономические показатели и делает работу двигателя стабильнее: На низких оборотах происходит снижение расхода топлива за счет рециркуляции уже отработанных газов (EGR) и низкообогащенной смеси. При этом маркетологи Mitsubishi утверждают, что благодаря MIVEC обедняется смесь по соотношению топливо/воздух еще на единицу (до 18,5) при наилучших показателях эффективности. Во время холодного пуска системой обеспечивается позднее зажигание и обедненная смесь, быстрее прогревается катализатор. Для уменьшения потерь на низких оборотах, возникших по причине сопротивления системы выпуска, применяют двойной выпускной коллектор, который включает передний катализатор. Вследствие этого удалось снизить выбросы до 75% по стандартам Японии.
Технология MIVEC по меньшей мере задействована в таких двигателях MMC: 3A91, 4A90, 3B20, 4A92, 4B10, 4A91, 4B11, 4G15, 4B12, 4G69, 4N13, 6B31, 4J10, 6G75, 4G92, 4G63T, 4G19, 6G72, 6A12,6G74.
Какое масло лить в двигатель?
#1 chevch
Пользователи
46 сообщений
Я вот собрался масло с расходниками поменять,да вот думаю какое лить?? colt 97 года 1,6, механика.Раньше Вольва была, лил Castrol RS, а сюда чаго прикажете .
кстате, а в Kemp’е нормальные фильтра продаются . , если нет, то где брать родные.
Спасибо Вам
P.S. надо бы сделать полную диагностику всей машины, а где??
#2 Cortes
Старожил иль ещё раньше
Пользователи
1 671 сообщений
- Пол: Мужской
- Город: Москва, САО, Речной вокзал
- Интересы: автомобили, техника
- Реалнейм: Владимир
- Марка: Audi / Audi / Volkswagen
- Модель: Q5 / Q3 / Tiguan
- Двигатель: 3.0 V6 TDI DPF turbo 7-ст. tiptronic / 2.0 TFSI S tronic 7-ст. / 2 TSI авт.-6 (Tiptronic)
- Год: 2010 /2011/ 2011
- Пробег: 105000 / 41000 / 35000
Опасная ситуация на дороге ?! Распознать возможную проблему, избежать её: если нельзя избежать — решить, если невозможно решить — смягчить.
Школа водительского мастерства BMW
#3 Polish
Пользователи
467 сообщений
- Город: Москва
- Интересы: Мафинки
#4 San
Администраторы
5 604 сообщений
- Пол: Мужской
- Город: г. Москва
- Реалнейм: Александр
- Марка: Мицубиси
- Модель: Кольт
- Двигатель: 4G63
- Год: 1996
- Пробег: 300 т.км
#5 chevch
Пользователи
46 сообщений
#6 chevch
Пользователи
46 сообщений
Polish, а zic+ это чаго за масло такое?, что-то дешево больно стоит??
а параметры какие брать, тоже 5w-50
#7 Casper
Пользователи
673 сообщений
- Пол: Мужской
- Город: Москва-ЮЗАО
- Интересы: house>progress>electro>trance
- Реалнейм: Дядя Серёжа
- Марка: Ракета
- Модель: ЗВЗ
Надежность, слабые места, ремонтопригодность
Дополнительные сведения о двигателе, интересующие каждого автолюбителя.
Надежность
По имеющейся информации моторы 6А12 при соблюдении правил их обслуживания и эксплуатации легко преодолевают рубеж ресурса 400 тыс. км. Надежность силового агрегата зависит от отношения к нему со стороны водителя.
В инструкции по эксплуатации автомобиля производитель подробно раскрыл все вопросы ТО двигателя. Но здесь надо учитывать один важный момент – для России требования по техническому обслуживанию должны быть несколько изменены. Конкретно – сокращены периоды пробега между очередными ТО. Это вызвано не совсем качественными ГСМ и дорогами, отличающимися от японских.
Например, при эксплуатации ДВС в тяжелых условиях замену масла рекомендуется производить через 5000 км пробега автомобиля. Для повышения надежности двигателя это расстояние придется сократить. Или заливать в систему масло японского качества. Несоблюдение этих условий значительно приблизит капитальный ремонт.
Форумчанин Марат Дулатбаев по поводу надежности пишет следующее (стиль автора сохранен):
Комментарий автовладельцаМарат ДулатбаевАвто: Mitsubishi LegnumДвижка зверюга. Езжу на таких более 5лет. Вовремя менять ГРМ и масла, и он не остановится. Сменил 6 авто и у всех 6а12.
Таким образом, можно с уверенностью говорить о высокой надежности агрегата при его правильном обслуживании.
Слабые места
Мотор 6А12 имеет несколько слабых мест, негативные последствия которых можно легко уменьшить. Наибольшую опасность вызывает снижение давления масла. Такое явление в большинстве случаев вызывает проворачивание вкладышей. Регулярное проведение ТО с соблюдением всех рекомендаций производителя является залогом безупречной работы двигателя.
Низкий ресурс ремня привода ГРМ (90 тыс. км). При его разрушении загиб клапанов неизбежен. Замена ремня через 75-80 тыс. км пробега устранит это слабое место.
Гидрокомпенсаторы быстро изнашиваются. Основная причина – использование не качественного масла. Силовые агрегаты 6А12 всех модификаций считаются «всеядными» по топливу, но очень требовательны к качеству масла. Использование дешевых сортов приводит к дорогостоящему ремонту двигателя.
Ремонтопригодность
Ремонтопригодность мотора хорошая. На просторах интернета можно найти много информации по этой тематике. Форумчане в своих сообщениях выкладывают подробное описание шагов ремонта двигателя своими руками. Для наглядности прикрепляют фото.
Но лучшим вариантом решения вопроса с ремонтом – доверить его проведение специалистам профильного автосервиса.
Все модификации двигателя Mitsubishi явились надежными и долговечными. Но очень требовательными к качеству ГСМ, особенно масла.
В своих материалах мы нередко упоминаем двигатели W8, W12, W16, ставшие своеобразной визитной карточкой концерна «Volkswagen». Читатели подробнее просят рассказать о том, что они из себя представляют. По принципу действия — ничего особенного: это обычные поршневые моторы. Их изюминка — в оригинальной конструкции.
V-образную схему, позволяющую поместить двигатель с достаточно большим числом цилиндров в тесное подкапотное пространство, используют почти все автопроизводители. А в конце 80-х годов прошлого века на фольксвагеновских автомобилях «Passat» и «Golf» впервые появился VR6 — шестицилиндровый двигатель с малым углом развала блоков цилиндров. Настолько малым (всего 15 градусов, в то время как у обычных V6 — от 60 до 90 градусов и больше), что вместо V-образной пары блоков по три цилиндра мотор внешне представляет собой один блок клиновидной формы с шестью цилиндрами. Если форму V6 фигурально можно уподобить канцелярской «галочке», то VR6 той же «галочке» со сложенными «крыльями». Аббревиатура VR6 расшифровывалась как «рядно-V-образный шестицилиндровый». Само название говорило о том, что конструкция объединяет две схемы построения двигателей. Смотрелась эта «шестерка» чуть пошире и покороче рядной «четверки».
Эксперимент оказался удачным, и через несколько лет инженеры из Вольфсбурга разработали еще и пятицилиндровый двигатель. Не мудрствуя лукаво от «шестерки» убрали один цилиндр, и получился VR5. Логично было сделать следующий шаг, и фольксвагеновцы его сделали: соорудили пару VR, по четыре цилиндра каждый, и соединили их в виде V под углом 72 градуса. Идея в том, что на каждом «крыле галочки» помещается вдвое больше цилиндров, чем в простом V-образном двигателе. Новый мотор назвали W-образным чисто условно, поскольку на конфигурацию буквы W эта схема не похожа. Но смысл ясен: «W» — двойное «V».
Принцип действия технологии MIVEC
Система MIVEC обеспечивает работу клапанов двигателя в различных режимах (с различной высотой подъема и степенью перекрытия фаз), в зависимости от оборотов и с автоматическим переключением между режимами.
Вот схематичное отображение процесса. По английски правда, но все понятно вроде. Как видите на схеме, высота подъема клапанов (синяя и красная кривые) одинаковая, а лишь сдвигается фаза. При этом возникает перекрытие клапанов (когда оба открыты). Либо наоборот, при малой нагрузке нет перекрытия, чем достигается ровность работы на ХХ. Так же это позволило расширить фазу относительно двигателя без мивек. На двигателях без мивек ширина фазы порядка 240* (не уточнял точно). То с системой мивек уже 268*. При этом и ровность работы сохраняется и мощность на большой нагрузке. Да, всем этим заправляет эбу по программе.
В середине 2000х Митсубиси реализовала это в двигателях семейства 4В1.Система аналогична предыдущей, но в ней вращаются уже два вала относительно друг друга.
Точно так же всем процессом управляет эбу, 2 соленоида мивек, 2 гидромуфты. На разных режимах валы двигаются относительно друг друга меняя фазу перекрытия клапанов. Иногда вращается только один вал. Но суть системы как и предыдущая. Она не меняет высоту подъема клапанов.Из плюсов. Система стала более гибкая, учитывает больше условий, имеет больше (относительно первой) настроек. Двигатель получился более экономичным, с меньшим количеством выбросов.Тут надо сделать небольшое отступление. Обе вышеописанные системы применяются только на двухвальных головках (DOHC). Для двигателя принципиальной разницы, сколько валов управляет клапанами нет. А с точки зрения инженера, которому говорят, ты должен снизить вес двигателя, огромная разница.Одновальные (SOHC) головки имеют несколько приемуществ. А именно, более легкий вес, меньшие габариты, меньше точек смазки, меньшие потери на трение, меньше деталей
Для инженера это архиважно. Вот именно для одновальных головок и создан был мивек в 92м году
По такой же схеме работает и двигатель 4G69.Как понимаете, тут нельзя сдвинуть вал. Ибо повернутся и впускные и выпускные фазы относительно КВ. Поэтому, тут была применена не система сдвига фаз, а переключение с одного профиля кулачка на другой.Как она работает? Многие картинку видели, а смысла не понимают. Но сама по себе система проста. На валу (для одного цилиндра) имеются 5 кулачков. Два кулачка для выпуска. Они одинаковые по высоте и в процессе работы никак не изменяются. Два кулачка для впуска имеют разный профиль и разную высоту подъема. Данные кулачки работают до 3500 об/мин. И один кулачок большой. Он работает после 3500 об/мин.
Система также контролируется эбу. До 3500 работают два кулачка. У каждого кулачка свое коромысло-рокер. Однако и большой кулачок тоже отрабатывает профиль своего кулачка. Но он никак не влияет на работу клапанов. Ибо он входит в рокеры и никуда не упирается. На рисунке я показал красными стрелками. В момент включения мивек, подается масло при помощи соленоида. Масло поднимает плунжер. Теперь рокер от большого кулачка упирается в плунжер и не входит в рокеры, а толкает их. При этом клапана уже соответственно отрабатывают профиль большого кулачка.Схематично это выглядит так:
Клапаны на разных режимах имеют разное перекрытие клапанов и разный подъем. По сути двигателю на малых оборотах не надо много воздуха. Ведь каждый подъем клапана это некая работа, чем меньше кулачки, тем меньше сопротивление, меньше работы затрачивается
И наоборот на большой нагрузке, важно большое открытие обоих клапанов на широкую фазу. Таким образом в двигателе с данной системой как бы два двигателя
Один работает от ХХ до 3500, имея хорошую экономичность, малое сопротивление трению, малые выбросы СО. И другой двигатель, который работает от 3500 до 6500 об/мин. клапана управляются через коромысло и поворотный вал. Валом управляет эбу. При повороте, меняется плечо коромысла-рокера. От длины плеча и зависит подъем (высота) клапана и ширина фазы.
Из плюсов относительно других систем мивек, отсутствует сложная масляная система для поворота (элемент ненадежности), одновальная головка со всеми своими плюсами, высота подъема и ширина фазы регулируется плавно, а не ступенчато. Однако, в большей степени последняя система сделана для экономии и уменьшения выбросов. Ибо двигатели 4J1 менее мощные чем 4В1. Но я думаю, что при определенных регулировках эта система даст очень хороший результат и по мощности.