Схема генератора
Чтобы суметь в нужный момент возбудить генератор, без применения аккумулятора, следует внимательно изучить схему и принцип действия разных модификаций агрегатов. Важным моментом является понимание того, для чего он нужен вообще и какие именно функции выполняет.
Говоря простым языком генератор – это устройство, которое служит для преобразования механической энергии в электрическую. Он обеспечивает питанием все потребители электрического тока в автомобиле и подзаряжает АКБ во время работы двигателя. Размещается он в передней части мотора, а работает за счет кривошипного вала. На «гибридах» генератор используется как стартер. Однако такая схема иногда встречается и на авто с двигателем внутреннего сгорания, имеющих систему «стоп-старт».
Исходя из этого можно сделать вывод, что генераторы бывают двух типов, отличающихся по конструкции. Главное их различие заключается в том, как располагается выпрямительный блок, приводной шкив и вентилятор. Помимо этого, генераторы имеющие разную схему, отличаются и габаритными размерами. Основные параметры, независимо от типа, остаются одинаковыми – все они имеют в конструкции ротор (индуктор), статор и т.д.
Ниже приведена схема генератора отечественного производства. Встречается он практически на всех моделях авто нашего производства.
А это более современная схема, часто встречается на ВАЗ от «восьмерки» и выше.
Теперь рассмотрим схему подключения генератора и как он работает.
Основная задача, которую выполняет ротор генератора – создает магнитополе. В этих целях вал имеет обмотку возбудителя (или ВО). Он располагается на выступах «плюсовых» половинок. На валу тоже имеется контактная группа, которая состоит из двух медных ободков. По ним проходит напряжение на обмотку возбуждения, для этого они припаиваются к контактам ВО.
Помимо этого, на вал устанавливаются и крыльчатка вентилятора. Там же крепится и приводной шкив (ВПД). Еще одним важным узлом ротора является подшипник.
Относительно функций статора – он преобразовывает постоянное напряжение в переменное и состоит из металлического сердечника набранного из пластинок и обмотки. Статор имеет 46 специальных пазов, в которые укладывается обмотка. Он позволяет разместить в себе три обмотки, благодаря чему можно получить трехфазное соединение.
Выпрямительный блок служит для преобразования тока, который производится генератором из переменного в постоянный для последующей подачи его на потребители. Блок состоит из шести полупроводниковых диодов, на каждую фазу по два – плюс и минус генератора.
Щетки нужны для передачи вырабатываемого тока на кольца возбудителя. Состоят они из графитового элемента, щеточек, пружин для удержания и поджима. На современных генераторах этот узел совмещен с регулятором в единое целое.
«Шоколадка» необходима для поддержания токов генератора в заданных значениях. Сегодня можно встретить электронные либо гибридные регуляторы. В гибридном исполнении в схеме имеются радиодетали и электроприборы. В электронных – части выполнены при помощи технологий ТМТ.
Привод генератора работает благодаря вращениям ременной передачи. Это придает такую же скорость вращения и индуктору, что и требуется для его нормальной работы.
Отсюда в большинстве моделей генераторов обмотка возбуждения подключена отдельной группой, которая состоит из двух полупроводниковых диодов. Диодная схема чаще называется выпрямителем, и препятствует перетеканию тока из аккумулятора обратно по цепи в генератор при стоячем двигателе.
Стоит знать. При соединении обмотки схемой «звездочка» на нулевой вывод устанавливается два дополнительных силовых диода, это позволяет повысить мощность генератора на 15 %. Выпрямительный блок устанавливается на генератор с помощью припайки либо фиксируется механическим способом.
Регулятор является крайне важной деталью в схеме генератора, он отвечает за стабилизацию напряжения при изменениях частоты вращения кривошипного вала. Этот процесс полностью автоматический и проходит путем воздействия на обмотку возбуждения
То есть регулятор отвечает за частоту напряжения и длительность импульсов.
Интересно. Регулятор изменяет силу тока, которая подается на аккумулятор благодаря термокомпенсации напряжения. Проще говоря, чем теплее, тем меньше тока поступает на АКБ.
Как устроены машины, работающие на постоянном токе
Электрические машины постоянного тока являются обратимыми устройствами, то есть они при определенном подключении могут использоваться либо как двигатель, либо как генератор тока.
Генератор в разрезе
Устройство машин постоянного тока
- Коллектор – металлический скользящий контакт, через который ротор коммутируется с внешними электрическими цепями;
- Щетки (обычно графитовые или медно-графитовые) – ответная часть скользящего контакта, которая постоянно трется о коллектор при вращении ротора;
Коммутация в машинах постоянного тока
- Ротор (якорь)- подвижная часть агрегата. При его вращении запускается процесс электромагнитной индукции.
- Главные полюса;
- Катушка обмотки возбуждения;
- Станина – корпус агрегата;
- Боковая крышка, которая закрывает крыльчатку охлаждения и является держателем подшипников качения, на которых вращается ротор;
- Вентилятор – призван охлаждать машину во время ее работы.
Устройство и принцип действия машин постоянного тока — статор
Основными рабочими частями машин постоянного тока являются ротор, который тут чаще называют якорем, и статор. Данную часть конструкции называют внутренней электрической.
Существует также и внешняя электрическая часть, с помощью которой осуществляется управление двигателем, а также подключаются внешние электрические сети.
Устройство машины постоянного тока – якорь располагается на валу
Остальные элементы относятся к механической части.
- Станина машины постоянного тока делается из прочного металла – обычно это конструкционная сталь.
- К внутренней части станины крепятся главные и добавочные полюса статора. Сердечники главных полюсов набираются из стальных пластин. Для добавочных полюсов они идут в основном массивные.
- Обмотка возбуждения находится на главных полюсах – их МДС формируют рабочий поток. Обмотки добавочных полюсов обеспечивают нормальную коммутацию.
Коммутация тока в машинах постоянного тока
Роторный магнитопровод шихтуется из специальной электромагнитной стали.
Сам якорь имеет следующее строение:
Рисунок 5. Схема электромотора с многообмоточным якорем
Подробно об алгоритме работы
Принцип действия генератора основан на простом физическом явлении, называемом электромагнитной индукцией. Суть в следующем: если навести на многовитковую обмотку из медной проволоки магнитное поле, изменяющее направление с определенной частотой, то на выходе катушки возникнет переменный ток той же частоты. Остается лишь создать упомянутое поле вокруг обмоток статора, вырабатывающих напряжение.
На практике генерация электричества происходит по такому алгоритму:
- Источник переменного магнитного поля автомобильного электрогенератора – обмотка самовозбуждения, расположенная в роторе. Чтобы изначально намагнитить клинообразные втулки, к ней подается импульс малой мощности от аккумулятора.
- После запуска мотора и достижения определенных оборотов коленчатого вала обмотки статора выдают переменный ток, выпрямляемый силовыми диодами. С этого момента обмотка ротора питается от самого генератора, то есть, происходит самовозбуждение. Внешний источник питания больше не требуется.
- Постоянный ток от диодного моста направляется в блок реле-регулятора. Поскольку величина напряжения «скачет» вместе с оборотами двигателя, задача электроники – стабилизировать перепады в диапазоне от 13,8 до 14,7 В.
- Дальше напряжение подается на подзарядку аккумуляторной батареи и в бортовую электросеть автомобиля.
Рекомендуем: Расшифровка маркировки M S на резине
Реле-регулятор напряжения может входить в состав генераторной установки либо применяться в качестве отдельного блока.
Ток в статорных обмотках возникает в результате вращения переменного магнитного поля, создаваемого катушкой ротора. Чем быстрее крутится вал, тем выше напряжение и частота на выходе. Преобразование в постоянный ток обеспечивают полупроводники (диоды), закрепленные на теплоотводящей пластине и обдуваемые крыльчаткой вентилятора.
Устройство генератора безщеточного типа позволяет обмотке статора возбуждаться без внешнего источника питания. Намагничивание стальных втулок начинается при малых оборотах вала благодаря особой конструкции ротора и дополнительной катушке. Поэтому когда вы заводите с толкача машину с разряженным аккумулятором, оборотов коленчатого вала хватает, чтобы электрогенератор включился в работу.
Основные неисправности генератора
Рассмотрим наиболее распространенные неисправности, характерные для автомобильного генератора:
- Обрывы электроцепей, короткие замыкания и другие повреждения. Чтобы диагностировать такой дефект, необходимо проверить силу тока и показатель напряжения на выходных контактах агрегата. Исходя из полученной информации принимается решение о дальнейших действиях.
- Также автомобилисты часто встречаются с такой неисправностью, как чрезмерно изношенные графитовые щетки, регулятор напряжения либо диодный мост. Любую изношенную и вышедшую из строя деталь следует заменить на новую. Что касается регулятора, то как упоминалось выше, он обеспечивает оптимальную подзарядку автомобильного аккумулятора исходя из температуры в моторном отсеке. Другими словами, устройство в автоматическом режиме определяет нужное напряжение для батареи в данных условиях. В некоторых моделях генераторов встречается ручное переключение режимов в зависимости от времени года. В таком случае низкие температуры не окажут негативного влияния на работу устройства. О выходе из строя реле, просигнализируют перепады напряжения в системе – это может быть слабый свет фар во время езды, которые загораются ярче при увеличении оборотов двигателя.
- Неисправные подшипники. В случае поломки этого элемента появятся посторонние повышенные шумы, хотя такой же симптом наблюдается и при плохой смазке узла.
- Шумы и вой. В случае обнаружения таких признаков, необходимо провести проверку сепараторных элементов, дорожек качения, контактные кольца на наличие проворотов. Такие симптомы также могут говорить и о возможном возникновении межвиткового замыкания обмотки статорного элемента либо тягового реле. В любом случае при выявлении посторонних шумов во время работы генератора рекомендуется провести тщательную диагностику состояния контактов.
- Рабочая температура генератора иногда может достигать 90 С, однако в случае явного перегрева, необходимо немедленно проверить работоспособность диодного моста. Помимо этого, следует определить не перегружена ли бортовая сеть автомобиля дополнительными приборами и сторонними устройствами. В случае критического повышения температур первым делом потемнеет изоляция обмотки статора, в худшем случае она может даже расплавиться.
- Сильный износ ремня генератора. При чрезмерном износе ремень агрегата может попросту порваться, что ведет к его неправильной работе в целом. То есть в таком случае на все потребители будет расходоваться электроэнергия из аккумуляторной батареи авто. В случае обрыва ремня генератор перестает выполнять свои функции, а значит у водителя есть совсем немного времени, чтобы доехать до ближайшего автосервиса или СТО. На такой дефект могут указать перепады напряжения в бортовой сети машины. В таком случае следует проверить ремень на целостность, внимательно осмотреть его поверхность на наличие трещит, надрывав, расслоений и других механических повреждений. В случае их обнаружения его рекомендуется заменить сразу.
Схемы с питанием обмотки возбуждения от выхода генератора
Автомобильный генератор возбуждается от аккумулятора. Как только включается зажигание, выходной транзистор регулятора открывается и через него идет ток возбуждения , генератор возбуждается. Когда генератор заработал, возбуждение происходит уже от самого генератора по той же цепи, через замок зажигания. При включенном зажигании в таких схемах плюс аккумулятора всегда остается подключенным к обмотке возбуждения.
Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.
Схемы подключения
По числу использующихся фаз все генераторные агрегаты делятся на две группы:
- однофазные;
- трехфазные.
Однофазный генератор
Схема подключения оборудования с одной фазой
Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.
Самые простые конструкции состоят из:
- магнитного поля;
- прокручивающейся рамки;
- коллекторного устройства, предназначенного для отвода тока.
Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.
Трехфазный генератор
Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.
Это обусловлено следующими преимуществами:
- В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
- Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
- В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
- Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.
Схема соединения «звездой»
Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).
Схема типа «звезда» для подключения трехфазного оборудования
Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.
Схемы соединения «треугольником»
Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.
При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.
Электросхемы соединений агрегата «треугольником»
Трехфазный генератор: общее устройство, принцип действия, симметричная система фазных ЭДС
Структура трехфазной цепи
Трехфазными генераторами называются генераторы переменного тока, одновременно вырабатывающие несколько ЭДС одинаковой частоты, но с различными начальными фазами. Совокупность таких ЭДС называется трехфазной системой ЭДС.
Многофазными цепями называются цепи переменного тока, в которых действуют многофазные системы ЭДС. Любая из цепей многофазной системы, где действует одна ЭДС, называется фазой.
Трехфазные системы имеют ряд преимуществ перед другими системами (однофазными и многофазными):
— они позволяют легко получить вращающееся магнитное поле (на этом основан принцип работы разных двигателей переменного тока).
— трехфазные системы наиболее экономичны, имеют высокий КПД.
— конструкция трехфазных двигателей, генераторов и трансформаторов наиболее проста, что обеспечивает их высокую надежность.
— один трехфазный генератор позволяет получать два различных (по величине) напряжения.
Современные электрические системы, состоящие из генераторов, электростанций, трансформаторов, линий передачи электроэнергии и распределительных сетей, представляют собой трехфазные системы переменного тока.
Трехфазная система электрических цепей — совокупность электрических цепей, в которых действуют три синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии. Каждая из цепей, входящих в трехфазную цепь, принято называть фазой.
Трехфазная цепь включает в себя источник (генератор) трехфазной ЭДС, проводники, потребители (приемники) трехфазной электрической энергии.
Рассмотрим устройство трехфазного генератора переменного тока
В пазах статора расположены три фазных обмотки (они условно представлены единственными витками). Начала и концы обмоток трехфазного генератора принято обозначать буквами и . Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Началом обмотки называют зажим, через который ток поступает во внешнюю цепь при положительных его значениях.
Ротор генератора выполняется в виде вращающегося постоянного магнита или электромагнита, питаемого через скользящие контакты постоянным током.
При вращении ротора с помощью двигателя в обмотках статора возникают периодически изменяющиеся ЭДС, частота которых одинакова, но фазы в любой момент времени различны, так как различны положения обмоток в магнитном поле. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем вращающегося ротора. Обмотки фаз генератора совершенно одинаковы и расположены симметрично по поверхности статора, поэтому ЭДС имеют одинаковые амплитудные значения, но сдвинутые друг относительно друга по фазе на угол 120 .
Если ЭДС фазы принять за исходную и считать ее начальную фазу равной нулю, то при вращении ротора с угловой скоростью против часовой стрелки выражения для мгновенных значений ЭДС можно записать следующим образом:
,
,
.
Переходя к комплексам действующих значений, получим:
,
Подобные системы ЭДС принято называть симметричными. Векторная диаграмма трехфазной симметричной системы ЭДС представляет собой симметричную трехлучевую звезду. Из векторной диаграммы следует, что
Если ЭДС фазы отстает от фазы , а ЭДС фазы отстает от ЭДС фазы , то такую последовательность фаз называют прямой. Обратную последовательность фаз можно получить, если изменить направление вращения ротора.
Если отдельные фазные обмотки генератора не соединены между собой электрически, то такую цепь называют несвязанной. По сути дела несвязанная трехфазная цепь состоит из трех независимых однофазных цепей. В противном случае трехфазная цепь называется связанной. Наибольшее распространение получили связанные трехфазные цепи, как наиболее экономичные, имеющие минимальное число проводов. При нормальном режиме работы трехфазных установок последовательность фаз принимается прямая.
Автозапуск бензогенератора
Обладая некоторыми навыками по электротехнике, владелец частного дома сможет без особых усилий своими руками смонтировать схему, которая обеспечит автозапуск и включение бензогенератора в сеть дома. Единственным условием является подбор модели автогенератора, способной запускаться и останавливаться с помощью ключа, так как автоматизация пуска генератора с двигателем, заводящимся кик-стартером, дело очень хлопотное и неблагодарное.
Идею принципа работы такой схемы можно выразить в 3 пунктах:
- Через пару минут после отключения электропитания от линии электропередач необходимо закрыть воздушную заслонку в двигателе и произвести сам запуск. Временная задержка необходима для перестраховки в тех ситуациях, когда свет пропал всего лишь на несколько секунд.
- Ещё через две минуты после прогрева двигателя устройства, открыть заслонку для воздуха и осуществить перенаправление нагрузки с внешней линии на резервную (от генератора).
- При возобновлении питания от магистральной сети через 60 секунд переключить нагрузку обратно на основную линию и остановить работу двигателя генератора.
В момент исчезновения напряжения в магистрали катушки пускателей, связанные с основной сетью, перестанут удерживать в разомкнутом состоянии контакты, включающие зажигание стартера, и в замкнутом — силовые контакты основной линии. Это приведёт к включению зажигания в бензогенераторе и отсоединению домашней сети от внешней магистрали.
Параллельно будет выполнено замыкание нормально замкнутых контактов. Это приведёт в действие магнитный толкатель, закрывающий воздушную заслонку, и подаст импульс на реле времени, отвечающее за пуск двигателя. Спустя минуту стартер выполнит запуск двигателя бензогенератора.
После старта генератора сработает катушка, отвечающая за остановку стартера. Одновременно с этими событиями произойдёт подача сигнала на временное реле, отвечающее за электроток из резервной сети, что приведёт через 120 секунд к открытию воздушной заслонки двигателя и поступлению электротока от генератора в домашнюю сеть.
Выключение электрогенератора и обратный переход на питание от магистрали обеспечивают другая пара контакторов и реле времени.
При выполнении таких работ необходимо иметь определённые знания о том, как правильно создать схему подключения генератора к сети дома, а также навыки по монтажу. И если нет подобной практики и уверенности, то лучше всего в таких ситуациях довериться специалистам.
Не рекомендуем:
- Заземлять один из выходов генератора на общедомовую шину PE (землю). В случае, если у вас земля “отвалится” (сгниет провод, открутится соединение) опасное напряжение появится на всех заземленных приборах вашего дома.
- Подключать бюджетные генераторы на прямую на нагрузку без использования фильтров сетевых помех. Изменение оборотов генератора вызывает сильные помехи и броски напряжение, которые опасны для чувствительного электронного оборудования (автоматика газовых котлов, дорогая бытовая техника).
- Использовать трехфазные генераторы мощностью до 10кВт для резервного питания дома. Перекос по фазам приведет к быстрому выходу генератора из строя. Используйте однофазные генераторы со схемой объединения фаз.
- Подключать инверторные генераторы на общую нейтральную шину. Это может привести к быстрому выходу генератора из строя.
- Пренебрегать правилом заземления самого корпуса генератора.
- Использовать неинверторный генератор без глухозаземленной нейтрали одного из его выходов, т.к. это приводит к некорректной работе автоматов диф.защиты (УЗО) и ошибкам в работе фазозависимых котлов.
- Использовать для заземления выход генератора, который отключается однополюсным автоматом на его корпусе.
О том, как правильно подключить генератор в сеть (220/380В) загородного дома поговорим позднее.
Заключение
Сам по себе генератор представляет собой достаточно сложный по конструкции и принципу действия агрегат, работа которого во многом определяет работоспособность авто в целом. Из-за того, что узел питает все электрооборудование в автомобиле, он считается основным элементом в бортовой сети транспортного средства. При появлении первых признаков неисправности в его работе следует максимально быстро заняться диагностикой и устранением неполадок, поскольку это может привести к серьезным последствиям. Ремонт можно доверить специалистам или выполнить самостоятельно — на нашем сайте представлено множество статей на эту тему.